噪声鲁棒ASR的抑制/增强网络

M. N. Huda, Md. Shahadat Hossain, Foyzul Hassan, Mohammad Mahedi Hasan, N. J. Lisa, G. Muhammad
{"title":"噪声鲁棒ASR的抑制/增强网络","authors":"M. N. Huda, Md. Shahadat Hossain, Foyzul Hassan, Mohammad Mahedi Hasan, N. J. Lisa, G. Muhammad","doi":"10.1109/ICCITECHN.2010.5723899","DOIUrl":null,"url":null,"abstract":"This paper describes an evaluation of Inhibition/Enhancement (In/En) network for noise robust automatic speech recognition (ASR). In articulatory feature based speech recognition using neural network, the In/En network is needed to discriminate whether the articulatory features (AFs) dynamic patterns of trajectories are convex or concave. The network is used to achieve categorical AFs movement by enhancing AFs peak patterns (convex patterns) and inhibiting AFs dip patterns (concave patterns). We have analyzed the effectiveness of the In/En algorithm by incorporating it into a system which consists of three stages: a) Multilayer Neural Networks (MLNs), b) an In/En Network and c) the Gram-Schmidt (GS) algorithm for orthogonalization. From the experiments using Japanese Newspaper Article Sentences (JNAS) database in clean and noisy acoustic environments, it is observed that the In/En network plays a significant role on the improvement of phoneme recognition performance. Moreover, the In/En network reduces the number of mixture components needed in Hidden Markov Models (HMMs).","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Inhibition/Enhancement network for noise robust ASR\",\"authors\":\"M. N. Huda, Md. Shahadat Hossain, Foyzul Hassan, Mohammad Mahedi Hasan, N. J. Lisa, G. Muhammad\",\"doi\":\"10.1109/ICCITECHN.2010.5723899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an evaluation of Inhibition/Enhancement (In/En) network for noise robust automatic speech recognition (ASR). In articulatory feature based speech recognition using neural network, the In/En network is needed to discriminate whether the articulatory features (AFs) dynamic patterns of trajectories are convex or concave. The network is used to achieve categorical AFs movement by enhancing AFs peak patterns (convex patterns) and inhibiting AFs dip patterns (concave patterns). We have analyzed the effectiveness of the In/En algorithm by incorporating it into a system which consists of three stages: a) Multilayer Neural Networks (MLNs), b) an In/En Network and c) the Gram-Schmidt (GS) algorithm for orthogonalization. From the experiments using Japanese Newspaper Article Sentences (JNAS) database in clean and noisy acoustic environments, it is observed that the In/En network plays a significant role on the improvement of phoneme recognition performance. Moreover, the In/En network reduces the number of mixture components needed in Hidden Markov Models (HMMs).\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"360 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种基于抑制/增强(In/En)网络的噪声鲁棒自动语音识别方法。在基于发音特征的神经网络语音识别中,需要使用In/En网络来判别发音特征轨迹的动态模式是凸还是凹。该网络通过增强af的峰值模式(凸模式)和抑制af的低谷模式(凹模式)来实现af的分类运动。我们分析了In/En算法的有效性,将其纳入一个由三个阶段组成的系统:a)多层神经网络(MLNs), b)一个In/En网络和c) Gram-Schmidt (GS)正交化算法。利用日本报纸文章句子(JNAS)数据库在清洁和噪声环境下进行的实验表明,in /En网络对音素识别性能的提高有显著作用。此外,In/En网络减少了隐马尔可夫模型(hmm)所需的混合分量的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Inhibition/Enhancement network for noise robust ASR
This paper describes an evaluation of Inhibition/Enhancement (In/En) network for noise robust automatic speech recognition (ASR). In articulatory feature based speech recognition using neural network, the In/En network is needed to discriminate whether the articulatory features (AFs) dynamic patterns of trajectories are convex or concave. The network is used to achieve categorical AFs movement by enhancing AFs peak patterns (convex patterns) and inhibiting AFs dip patterns (concave patterns). We have analyzed the effectiveness of the In/En algorithm by incorporating it into a system which consists of three stages: a) Multilayer Neural Networks (MLNs), b) an In/En Network and c) the Gram-Schmidt (GS) algorithm for orthogonalization. From the experiments using Japanese Newspaper Article Sentences (JNAS) database in clean and noisy acoustic environments, it is observed that the In/En network plays a significant role on the improvement of phoneme recognition performance. Moreover, the In/En network reduces the number of mixture components needed in Hidden Markov Models (HMMs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信