L. Yang, A. Zeynali, M. Hajiesmaili, R. Sitaraman, D. Towsley
{"title":"在线多维背包问题的竞争算法","authors":"L. Yang, A. Zeynali, M. Hajiesmaili, R. Sitaraman, D. Towsley","doi":"10.1145/3489048.3522627","DOIUrl":null,"url":null,"abstract":"In this work, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem with several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop an online algorithm for OMdKP that uses an exponential reservation function to make online admission decisions. Our competitive analysis shows that the proposed online algorithm achieves the competitive ratio of O(log (Θ α)), where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Competitive Algorithms for Online Multidimensional Knapsack Problems\",\"authors\":\"L. Yang, A. Zeynali, M. Hajiesmaili, R. Sitaraman, D. Towsley\",\"doi\":\"10.1145/3489048.3522627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem with several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop an online algorithm for OMdKP that uses an exponential reservation function to make online admission decisions. Our competitive analysis shows that the proposed online algorithm achieves the competitive ratio of O(log (Θ α)), where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor.\",\"PeriodicalId\":264598,\"journal\":{\"name\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489048.3522627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Competitive Algorithms for Online Multidimensional Knapsack Problems
In this work, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem with several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop an online algorithm for OMdKP that uses an exponential reservation function to make online admission decisions. Our competitive analysis shows that the proposed online algorithm achieves the competitive ratio of O(log (Θ α)), where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor.