行人检测的部分级全卷积网络

Xinran Wang, Cheolkon Jung, A. Hero
{"title":"行人检测的部分级全卷积网络","authors":"Xinran Wang, Cheolkon Jung, A. Hero","doi":"10.1109/ICASSP.2017.7952560","DOIUrl":null,"url":null,"abstract":"Since pedestrians in videos have a wide range of appearances such as body poses, occlusions, and complex backgrounds, pedestrian detection is a challengeable task. In this paper, we propose part-level fully convolutional networks (FCN) for pedestrian detection. We adopt deep learning to deal with the proposal shifting problem in pedestrian detection. First, we combine convolutional neural networks (CNN) and FCN to align bounding boxes for pedestrians. Then, we perform part-level pedestrian detection based on CNN to recall the lost body parts. Experimental results demonstrate that the proposed method achieves 6.83% performance improvement in log-average miss rate over CifarNet.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Part-level fully convolutional networks for pedestrian detection\",\"authors\":\"Xinran Wang, Cheolkon Jung, A. Hero\",\"doi\":\"10.1109/ICASSP.2017.7952560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since pedestrians in videos have a wide range of appearances such as body poses, occlusions, and complex backgrounds, pedestrian detection is a challengeable task. In this paper, we propose part-level fully convolutional networks (FCN) for pedestrian detection. We adopt deep learning to deal with the proposal shifting problem in pedestrian detection. First, we combine convolutional neural networks (CNN) and FCN to align bounding boxes for pedestrians. Then, we perform part-level pedestrian detection based on CNN to recall the lost body parts. Experimental results demonstrate that the proposed method achieves 6.83% performance improvement in log-average miss rate over CifarNet.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于视频中的行人具有各种各样的外观,例如身体姿势,遮挡和复杂的背景,因此行人检测是一项具有挑战性的任务。在本文中,我们提出了部分级全卷积网络(FCN)用于行人检测。我们采用深度学习来处理行人检测中的建议移位问题。首先,我们结合卷积神经网络(CNN)和FCN来对齐行人的边界框。然后,我们进行基于CNN的部分级行人检测来召回丢失的身体部位。实验结果表明,该方法在对数平均脱靶率方面比CifarNet提高了6.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part-level fully convolutional networks for pedestrian detection
Since pedestrians in videos have a wide range of appearances such as body poses, occlusions, and complex backgrounds, pedestrian detection is a challengeable task. In this paper, we propose part-level fully convolutional networks (FCN) for pedestrian detection. We adopt deep learning to deal with the proposal shifting problem in pedestrian detection. First, we combine convolutional neural networks (CNN) and FCN to align bounding boxes for pedestrians. Then, we perform part-level pedestrian detection based on CNN to recall the lost body parts. Experimental results demonstrate that the proposed method achieves 6.83% performance improvement in log-average miss rate over CifarNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信