海报

Jong Hyun Lim, A. Zhan, A. Terzis
{"title":"海报","authors":"Jong Hyun Lim, A. Zhan, A. Terzis","doi":"10.1145/1999995.2000060","DOIUrl":null,"url":null,"abstract":"1. THE HEALTHOS SYSTEM Recently, an increasing number of pervasive healthcare applications have been developed as a way to overcome the shortcomings of the traditional clinical infrastructure. However, the nature of these applications, both closed and vertically-integrated, hinders integration with the existing infrastructure, increases the development cost, and fails to provide a unified management interface. In response to these challenges, we propose HealthOS, a platform designed to develop pervasive healthcare applications. Figure 1 illustrates the target environment for HealthOS. As the figure suggests, HealthOS users can carry multiple healthcare-related devices in their living environments, each using their proprietary communication protocols and data formats. HealthOS collects, encrypts, and stores the data on either a local machine or in a secure cloud service. Upon request, HealthOS can translate the data into requested formats that different healthcare applications may require. From the perspective of an application developer, the attractiveness of the HealthOS platform lies in the need to implement only the analysis and representation logic of the application. We also envision the use of a HealthStore (similar to the Apple AppStore), in which pre-developed applications can be shared and reused. The various applications are handled using the unified management console in HealthOS. Furthermore, HealthOS can be adapted to mobile platforms. Achieving our vision of HealthOS, requires implementing several modules for each device. First, a module is necessary to communicate with each device and translate the custom data that it produces. We call this module a HealthOS driver. Secondly, the formats used to present the data to different stakeholders (e.g., family members, healthcare professionals, etc.) may differ. Thus, HealthOS uses a translator module used for converting a device’s proprietary data format to match well-defined, standardized medical data presentation formats used by major electronic medical record (EMR) systems [2, 6]. Both drivers and translators follow a component-based design in the sense that they provide and require well-defined interfaces for inter-module interaction and reuse. Given that data can successfully be collected and interpreted using HealthOS, application developers can focus solely on properly","PeriodicalId":221601,"journal":{"name":"Proceedings of the 9th international conference on Mobile systems, applications, and services - MobiSys '11","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Poster\",\"authors\":\"Jong Hyun Lim, A. Zhan, A. Terzis\",\"doi\":\"10.1145/1999995.2000060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. THE HEALTHOS SYSTEM Recently, an increasing number of pervasive healthcare applications have been developed as a way to overcome the shortcomings of the traditional clinical infrastructure. However, the nature of these applications, both closed and vertically-integrated, hinders integration with the existing infrastructure, increases the development cost, and fails to provide a unified management interface. In response to these challenges, we propose HealthOS, a platform designed to develop pervasive healthcare applications. Figure 1 illustrates the target environment for HealthOS. As the figure suggests, HealthOS users can carry multiple healthcare-related devices in their living environments, each using their proprietary communication protocols and data formats. HealthOS collects, encrypts, and stores the data on either a local machine or in a secure cloud service. Upon request, HealthOS can translate the data into requested formats that different healthcare applications may require. From the perspective of an application developer, the attractiveness of the HealthOS platform lies in the need to implement only the analysis and representation logic of the application. We also envision the use of a HealthStore (similar to the Apple AppStore), in which pre-developed applications can be shared and reused. The various applications are handled using the unified management console in HealthOS. Furthermore, HealthOS can be adapted to mobile platforms. Achieving our vision of HealthOS, requires implementing several modules for each device. First, a module is necessary to communicate with each device and translate the custom data that it produces. We call this module a HealthOS driver. Secondly, the formats used to present the data to different stakeholders (e.g., family members, healthcare professionals, etc.) may differ. Thus, HealthOS uses a translator module used for converting a device’s proprietary data format to match well-defined, standardized medical data presentation formats used by major electronic medical record (EMR) systems [2, 6]. Both drivers and translators follow a component-based design in the sense that they provide and require well-defined interfaces for inter-module interaction and reuse. Given that data can successfully be collected and interpreted using HealthOS, application developers can focus solely on properly\",\"PeriodicalId\":221601,\"journal\":{\"name\":\"Proceedings of the 9th international conference on Mobile systems, applications, and services - MobiSys '11\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th international conference on Mobile systems, applications, and services - MobiSys '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1999995.2000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th international conference on Mobile systems, applications, and services - MobiSys '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1999995.2000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster
1. THE HEALTHOS SYSTEM Recently, an increasing number of pervasive healthcare applications have been developed as a way to overcome the shortcomings of the traditional clinical infrastructure. However, the nature of these applications, both closed and vertically-integrated, hinders integration with the existing infrastructure, increases the development cost, and fails to provide a unified management interface. In response to these challenges, we propose HealthOS, a platform designed to develop pervasive healthcare applications. Figure 1 illustrates the target environment for HealthOS. As the figure suggests, HealthOS users can carry multiple healthcare-related devices in their living environments, each using their proprietary communication protocols and data formats. HealthOS collects, encrypts, and stores the data on either a local machine or in a secure cloud service. Upon request, HealthOS can translate the data into requested formats that different healthcare applications may require. From the perspective of an application developer, the attractiveness of the HealthOS platform lies in the need to implement only the analysis and representation logic of the application. We also envision the use of a HealthStore (similar to the Apple AppStore), in which pre-developed applications can be shared and reused. The various applications are handled using the unified management console in HealthOS. Furthermore, HealthOS can be adapted to mobile platforms. Achieving our vision of HealthOS, requires implementing several modules for each device. First, a module is necessary to communicate with each device and translate the custom data that it produces. We call this module a HealthOS driver. Secondly, the formats used to present the data to different stakeholders (e.g., family members, healthcare professionals, etc.) may differ. Thus, HealthOS uses a translator module used for converting a device’s proprietary data format to match well-defined, standardized medical data presentation formats used by major electronic medical record (EMR) systems [2, 6]. Both drivers and translators follow a component-based design in the sense that they provide and require well-defined interfaces for inter-module interaction and reuse. Given that data can successfully be collected and interpreted using HealthOS, application developers can focus solely on properly
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信