Cat2Type:维基百科知识图中实体类型的类别嵌入

Russa Biswas, Radina Sofronova, Harald Sack, Mehwish Alam
{"title":"Cat2Type:维基百科知识图中实体类型的类别嵌入","authors":"Russa Biswas, Radina Sofronova, Harald Sack, Mehwish Alam","doi":"10.1145/3460210.3493575","DOIUrl":null,"url":null,"abstract":"The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation. Entity Typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper introduces an approach named Cat2Type which exploits the Wikipedia Categories to predict the missing entity types in a KG. This work extracts information from Wikipedia Category names and the Wikipedia Category graph which are the sources of rich semantic information about the entities. In Cat2Type, the characteristic features of the entities encapsulated in Wikipedia Category names are exploited using Neural Language Models. On the other hand, a Wikipedia Category graph is constructed to capture the connection between the categories. The Node level representations are learned by optimizing the neighbourhood information on the Wikipedia category graph. These representations are then used for entity type prediction via classification. The performance of Cat2Type is assessed on two real-world benchmark datasets DBpedia630k and FIGER. The experiments depict that Cat2Type obtained a significant improvement over state-of-the-art approaches.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cat2Type: Wikipedia Category Embeddings for Entity Typing in Knowledge Graphs\",\"authors\":\"Russa Biswas, Radina Sofronova, Harald Sack, Mehwish Alam\",\"doi\":\"10.1145/3460210.3493575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation. Entity Typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper introduces an approach named Cat2Type which exploits the Wikipedia Categories to predict the missing entity types in a KG. This work extracts information from Wikipedia Category names and the Wikipedia Category graph which are the sources of rich semantic information about the entities. In Cat2Type, the characteristic features of the entities encapsulated in Wikipedia Category names are exploited using Neural Language Models. On the other hand, a Wikipedia Category graph is constructed to capture the connection between the categories. The Node level representations are learned by optimizing the neighbourhood information on the Wikipedia category graph. These representations are then used for entity type prediction via classification. The performance of Cat2Type is assessed on two real-world benchmark datasets DBpedia630k and FIGER. The experiments depict that Cat2Type obtained a significant improvement over state-of-the-art approaches.\",\"PeriodicalId\":377331,\"journal\":{\"name\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th on Knowledge Capture Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460210.3493575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

知识图谱(Knowledge Graphs, KGs)中的实体类型信息,如DBpedia、Freebase等,由于自动生成,往往是不完整的。实体类型是分配或推断KG中实体的语义类型的任务。本文介绍了一种名为Cat2Type的方法,该方法利用维基百科的分类来预测KG中缺失的实体类型。这项工作从维基百科类别名称和维基百科类别图中提取信息,它们是关于实体的丰富语义信息的来源。在Cat2Type中,使用神经语言模型利用维基百科类别名称中封装的实体的特征特征。另一方面,构建一个维基百科类别图来捕获类别之间的联系。节点级表示通过优化维基百科类别图上的邻域信息来学习。然后将这些表示用于通过分类进行实体类型预测。Cat2Type的性能在两个真实世界的基准数据集DBpedia630k和FIGER上进行了评估。实验表明,与最先进的方法相比,Cat2Type获得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cat2Type: Wikipedia Category Embeddings for Entity Typing in Knowledge Graphs
The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation. Entity Typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper introduces an approach named Cat2Type which exploits the Wikipedia Categories to predict the missing entity types in a KG. This work extracts information from Wikipedia Category names and the Wikipedia Category graph which are the sources of rich semantic information about the entities. In Cat2Type, the characteristic features of the entities encapsulated in Wikipedia Category names are exploited using Neural Language Models. On the other hand, a Wikipedia Category graph is constructed to capture the connection between the categories. The Node level representations are learned by optimizing the neighbourhood information on the Wikipedia category graph. These representations are then used for entity type prediction via classification. The performance of Cat2Type is assessed on two real-world benchmark datasets DBpedia630k and FIGER. The experiments depict that Cat2Type obtained a significant improvement over state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信