Sae-Han Suh, Ji-Eun Jhang, Kwanghee Won, Sung Y. Shin, C. Sung
{"title":"基于深度卷积神经网络的植被制图研究进展","authors":"Sae-Han Suh, Ji-Eun Jhang, Kwanghee Won, Sung Y. Shin, C. Sung","doi":"10.1145/3264746.3264791","DOIUrl":null,"url":null,"abstract":"The Precision Agriculture (PA) plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers' trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, we conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. We would like to study the possibility of expanding the concept to the on-site, near realtime, crop site inspections, by evaluating the generated results.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of vegetation mapping with deep convolutional neural network\",\"authors\":\"Sae-Han Suh, Ji-Eun Jhang, Kwanghee Won, Sung Y. Shin, C. Sung\",\"doi\":\"10.1145/3264746.3264791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Precision Agriculture (PA) plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers' trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, we conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. We would like to study the possibility of expanding the concept to the on-site, near realtime, crop site inspections, by evaluating the generated results.\",\"PeriodicalId\":186790,\"journal\":{\"name\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3264746.3264791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of vegetation mapping with deep convolutional neural network
The Precision Agriculture (PA) plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers' trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, we conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. We would like to study the possibility of expanding the concept to the on-site, near realtime, crop site inspections, by evaluating the generated results.