一个有效的可变长度编码方案的IID源

K. Cheung, A. Kiely
{"title":"一个有效的可变长度编码方案的IID源","authors":"K. Cheung, A. Kiely","doi":"10.1109/DCC.1995.515508","DOIUrl":null,"url":null,"abstract":"In this article we examine a scheme that uses two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. One Huffman code encodes the length of runs of the dominant symbol, the other encodes the remaining symbols. We call this combined strategy alternating runlength Huffman (ARH) coding. This is a popular scheme, used for example in the efficient pyramid image coder (EPIC) subband coding algorithm. Since the runlengths of the dominant symbol are geometrically distributed, they can be encoded using the Huffman codes identified by Golomb (1966) and later generalized by Gallager and Van Voorhis (1975). This runlength encoding allows the most likely symbol to be encoded using less than one bit per sample, providing a simple method for overcoming a drawback of prefix codes-that the redundancy approaches one as the largest symbol probability P approaches one. For ARH coding, the redundancy approaches zero as P approaches one. Comparing the average code rate of ARH with direct Huffman coding we find that: 1. If P<1/3, ARH is less efficient than Huffman coding. 2. If 1/3/spl les/P<2/5, ARH is less than or equally efficient as Huffman coding, depending on the source distribution. 3. If 2/5/spl les/P/spl les/0.618, ARH and Huffman coding are equally efficient. 4. If P>0.618, ARH is more efficient than Huffman coding. We give examples of applying ARH coding to some specific sources.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An efficient variable length coding scheme for an IID source\",\"authors\":\"K. Cheung, A. Kiely\",\"doi\":\"10.1109/DCC.1995.515508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we examine a scheme that uses two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. One Huffman code encodes the length of runs of the dominant symbol, the other encodes the remaining symbols. We call this combined strategy alternating runlength Huffman (ARH) coding. This is a popular scheme, used for example in the efficient pyramid image coder (EPIC) subband coding algorithm. Since the runlengths of the dominant symbol are geometrically distributed, they can be encoded using the Huffman codes identified by Golomb (1966) and later generalized by Gallager and Van Voorhis (1975). This runlength encoding allows the most likely symbol to be encoded using less than one bit per sample, providing a simple method for overcoming a drawback of prefix codes-that the redundancy approaches one as the largest symbol probability P approaches one. For ARH coding, the redundancy approaches zero as P approaches one. Comparing the average code rate of ARH with direct Huffman coding we find that: 1. If P<1/3, ARH is less efficient than Huffman coding. 2. If 1/3/spl les/P<2/5, ARH is less than or equally efficient as Huffman coding, depending on the source distribution. 3. If 2/5/spl les/P/spl les/0.618, ARH and Huffman coding are equally efficient. 4. If P>0.618, ARH is more efficient than Huffman coding. We give examples of applying ARH coding to some specific sources.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这篇文章中,我们研究了一个方案,使用两个交替的霍夫曼码来编码一个离散的独立的和同分布的源与一个主导符号。一个霍夫曼码编码主导符号的运行长度,另一个编码剩余的符号。我们称这种组合策略为交替跑长霍夫曼(ARH)编码。这是一种流行的方案,例如用于高效金字塔图像编码器(EPIC)子带编码算法。由于主导符号的长度呈几何分布,因此可以使用Golomb(1966)确定的霍夫曼码进行编码,后来由Gallager和Van Voorhis(1975)推广。这种运行长度编码允许最可能的符号在每个样本中使用少于一个比特进行编码,这为克服前缀代码的缺点提供了一种简单的方法——当最大符号概率P接近1时,冗余接近1。对于ARH编码,当P趋于1时,冗余趋于零。将ARH编码与直接霍夫曼编码的平均码率进行比较,我们发现:1。如果P0.618, ARH编码比Huffman编码效率更高。我们给出了将ARH编码应用于某些特定源的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient variable length coding scheme for an IID source
In this article we examine a scheme that uses two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. One Huffman code encodes the length of runs of the dominant symbol, the other encodes the remaining symbols. We call this combined strategy alternating runlength Huffman (ARH) coding. This is a popular scheme, used for example in the efficient pyramid image coder (EPIC) subband coding algorithm. Since the runlengths of the dominant symbol are geometrically distributed, they can be encoded using the Huffman codes identified by Golomb (1966) and later generalized by Gallager and Van Voorhis (1975). This runlength encoding allows the most likely symbol to be encoded using less than one bit per sample, providing a simple method for overcoming a drawback of prefix codes-that the redundancy approaches one as the largest symbol probability P approaches one. For ARH coding, the redundancy approaches zero as P approaches one. Comparing the average code rate of ARH with direct Huffman coding we find that: 1. If P<1/3, ARH is less efficient than Huffman coding. 2. If 1/3/spl les/P<2/5, ARH is less than or equally efficient as Huffman coding, depending on the source distribution. 3. If 2/5/spl les/P/spl les/0.618, ARH and Huffman coding are equally efficient. 4. If P>0.618, ARH is more efficient than Huffman coding. We give examples of applying ARH coding to some specific sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信