{"title":"基于时间的特征选择和文本分类的迁移学习","authors":"Fumiyo Fukumoto, Yoshimi Suzuki","doi":"10.5220/0005593100170026","DOIUrl":null,"url":null,"abstract":"This paper addresses text categorization problem that training data may derive from a different time period from the test data. We present a method for text categorization that minimizes the impact of temporal effects. Like much previous work on text categorization, we used feature selection. We selected two types of informative terms according to corpus statistics. One is temporal independent terms that are salient across full temporal range of training documents. Another is temporal dependent terms which are important for a specific time period. For the training documents represented by independent/dependent terms, we applied boosting based transfer learning to learn accurate model for timeline adaptation. The results using Japanese data showed that the method was comparable to the current state-of-the-art biased-SVM method, as the macro-averaged F-score obtained by our method was 0.688 and that of biased-SVM was 0.671. Moreover, we found that the method is effective, especially when the creation time period of the test data differs greatly from that of the training data.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Temporal-based feature selection and transfer learning for text categorization\",\"authors\":\"Fumiyo Fukumoto, Yoshimi Suzuki\",\"doi\":\"10.5220/0005593100170026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses text categorization problem that training data may derive from a different time period from the test data. We present a method for text categorization that minimizes the impact of temporal effects. Like much previous work on text categorization, we used feature selection. We selected two types of informative terms according to corpus statistics. One is temporal independent terms that are salient across full temporal range of training documents. Another is temporal dependent terms which are important for a specific time period. For the training documents represented by independent/dependent terms, we applied boosting based transfer learning to learn accurate model for timeline adaptation. The results using Japanese data showed that the method was comparable to the current state-of-the-art biased-SVM method, as the macro-averaged F-score obtained by our method was 0.688 and that of biased-SVM was 0.671. Moreover, we found that the method is effective, especially when the creation time period of the test data differs greatly from that of the training data.\",\"PeriodicalId\":102743,\"journal\":{\"name\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005593100170026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005593100170026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal-based feature selection and transfer learning for text categorization
This paper addresses text categorization problem that training data may derive from a different time period from the test data. We present a method for text categorization that minimizes the impact of temporal effects. Like much previous work on text categorization, we used feature selection. We selected two types of informative terms according to corpus statistics. One is temporal independent terms that are salient across full temporal range of training documents. Another is temporal dependent terms which are important for a specific time period. For the training documents represented by independent/dependent terms, we applied boosting based transfer learning to learn accurate model for timeline adaptation. The results using Japanese data showed that the method was comparable to the current state-of-the-art biased-SVM method, as the macro-averaged F-score obtained by our method was 0.688 and that of biased-SVM was 0.671. Moreover, we found that the method is effective, especially when the creation time period of the test data differs greatly from that of the training data.