基于超分辨率网络的低分辨率SAR图像目标自动识别

Shuang Yang, Xiaoran Shi, Feng Zhou
{"title":"基于超分辨率网络的低分辨率SAR图像目标自动识别","authors":"Shuang Yang, Xiaoran Shi, Feng Zhou","doi":"10.1109/APSAR46974.2019.9048251","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) automatic target recognition (ATR) is one of the hottest issue in current research because of its wide application value. However, the low-resolution SAR images will decline the recognition accuracy of targets due to its obscure characteristic, and meanwhile it is difficult to acquire a great number of high-resolution SAR images for extracting clear characteristic. To solve these problems, this paper proposes a method of ATR for low-resolution SAR images based on super-resolution network. Super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN) are utilized for extracting characteristic and classification, respectively. The segmented low-resolution SAR images are enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in SAR image; Then the enhanced SAR images are classified automatically by DCNN. Finally, the effectiveness and the efficiency are verified on the open data set, moving and stationary target acquisition and recognition (MSTAR).","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Target Recognition for Low-Resolution SAR Images Based on Super-Resolution Network\",\"authors\":\"Shuang Yang, Xiaoran Shi, Feng Zhou\",\"doi\":\"10.1109/APSAR46974.2019.9048251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) automatic target recognition (ATR) is one of the hottest issue in current research because of its wide application value. However, the low-resolution SAR images will decline the recognition accuracy of targets due to its obscure characteristic, and meanwhile it is difficult to acquire a great number of high-resolution SAR images for extracting clear characteristic. To solve these problems, this paper proposes a method of ATR for low-resolution SAR images based on super-resolution network. Super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN) are utilized for extracting characteristic and classification, respectively. The segmented low-resolution SAR images are enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in SAR image; Then the enhanced SAR images are classified automatically by DCNN. Finally, the effectiveness and the efficiency are verified on the open data set, moving and stationary target acquisition and recognition (MSTAR).\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)自动目标识别(ATR)因其广泛的应用价值而成为当前研究的热点之一。然而,低分辨率SAR图像由于其模糊的特征会降低目标的识别精度,同时难以获得大量的高分辨率SAR图像来提取清晰的特征。为了解决这些问题,本文提出了一种基于超分辨率网络的低分辨率SAR图像ATR方法。利用超分辨率生成对抗网络(SRGAN)和深度卷积神经网络(DCNN)分别进行特征提取和分类。通过SRGAN对分割后的低分辨率SAR图像进行增强,提高了SAR图像中目标的视觉分辨率和特征表征能力;然后利用DCNN对增强后的SAR图像进行自动分类。最后,在开放数据集、运动和静止目标获取与识别(MSTAR)上验证了该方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Target Recognition for Low-Resolution SAR Images Based on Super-Resolution Network
Synthetic aperture radar (SAR) automatic target recognition (ATR) is one of the hottest issue in current research because of its wide application value. However, the low-resolution SAR images will decline the recognition accuracy of targets due to its obscure characteristic, and meanwhile it is difficult to acquire a great number of high-resolution SAR images for extracting clear characteristic. To solve these problems, this paper proposes a method of ATR for low-resolution SAR images based on super-resolution network. Super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN) are utilized for extracting characteristic and classification, respectively. The segmented low-resolution SAR images are enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in SAR image; Then the enhanced SAR images are classified automatically by DCNN. Finally, the effectiveness and the efficiency are verified on the open data set, moving and stationary target acquisition and recognition (MSTAR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信