基于神经网络的系统辨识的信息理论方法

K. Chernyshov
{"title":"基于神经网络的系统辨识的信息理论方法","authors":"K. Chernyshov","doi":"10.1109/SIBCON.2009.5044836","DOIUrl":null,"url":null,"abstract":"The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.","PeriodicalId":164545,"journal":{"name":"2009 International Siberian Conference on Control and Communications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An information theoretic approach to neural network based system identification\",\"authors\":\"K. Chernyshov\",\"doi\":\"10.1109/SIBCON.2009.5044836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.\",\"PeriodicalId\":164545,\"journal\":{\"name\":\"2009 International Siberian Conference on Control and Communications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Siberian Conference on Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON.2009.5044836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Siberian Conference on Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2009.5044836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于信息论准则的非线性随机系统输入/输出映射的系统辨识方法。在此基础上,将所研究系统的参数化描述与相应的互信息估计技术(香农意义上的互信息估计技术)相结合,最终导致有限维优化问题。后者的解决是基于将神经网络应用于连续函数优化问题的论文思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An information theoretic approach to neural network based system identification
The paper presents an approach to system identification of input/output mappings of non-linear stochastic systems in accordance to an information-theoretic criterion. At that, a parameterized description of the system under study is utilized combined with a corresponding technique of estimation of the mutual information (in the Shannon sense), leading, finally, to a problem of the finite dimensional optimization. Solving the latter is based on applying ideas of papers on using neural networks within problems of optimization of continuous functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信