{"title":"汽车同步电力驱动质子交换膜燃料电池堆(PEMFC)集成数学模型","authors":"V. D. Dio, D. L. Cascia, R. Liga, Rosario Miceli","doi":"10.1109/ICELMACH.2008.4800045","DOIUrl":null,"url":null,"abstract":"In this work, the mathematical dynamical model of a PEMFC stack has been developed and implemented in Matlab environment. Lots of simulations have been executed in two different load conditions. Firstly with a resistive load and finally with a synchronous electrical power drive in automotive load conditions. The innovation in this field consists in the integration in PEMFC stack mathematical dynamic model of a synchronous electrical power drive one for automotive purposes. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency. This represents a useful design tool.","PeriodicalId":416125,"journal":{"name":"2008 18th International Conference on Electrical Machines","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Integrated mathematical model of proton exchange membrane fuel cell stack (PEMFC) with automotive synchronous electrical power drive\",\"authors\":\"V. D. Dio, D. L. Cascia, R. Liga, Rosario Miceli\",\"doi\":\"10.1109/ICELMACH.2008.4800045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the mathematical dynamical model of a PEMFC stack has been developed and implemented in Matlab environment. Lots of simulations have been executed in two different load conditions. Firstly with a resistive load and finally with a synchronous electrical power drive in automotive load conditions. The innovation in this field consists in the integration in PEMFC stack mathematical dynamic model of a synchronous electrical power drive one for automotive purposes. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency. This represents a useful design tool.\",\"PeriodicalId\":416125,\"journal\":{\"name\":\"2008 18th International Conference on Electrical Machines\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 18th International Conference on Electrical Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2008.4800045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 18th International Conference on Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2008.4800045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated mathematical model of proton exchange membrane fuel cell stack (PEMFC) with automotive synchronous electrical power drive
In this work, the mathematical dynamical model of a PEMFC stack has been developed and implemented in Matlab environment. Lots of simulations have been executed in two different load conditions. Firstly with a resistive load and finally with a synchronous electrical power drive in automotive load conditions. The innovation in this field consists in the integration in PEMFC stack mathematical dynamic model of a synchronous electrical power drive one for automotive purposes. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency. This represents a useful design tool.