基于CNMOOC数据的学生熟练程度预测

Qi Wang, Liping Shen
{"title":"基于CNMOOC数据的学生熟练程度预测","authors":"Qi Wang, Liping Shen","doi":"10.1145/3184066.3184098","DOIUrl":null,"url":null,"abstract":"MOOC continues to thrive in today and CNMOOC is one of the largest MOOC platform in China which cooperates with many high schools and universities. We try to hardness the data of students' learning behaviors to provide better personalized learning advice. Online education digitalizes students' learning behaviors which makes it convenient for analyzing students' behaviors. However the industrial data of MOOC is much sophisticated and sparse. In the paper, we introduce the system using machine learning methods to improve educational outcomes and describe some ideas tackling data sparsity in the scenario. We only focus on predicting student learning proficiency on specific course and compare different models under the scenario of inadequate data.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Student proficiency prediction on CNMOOC data\",\"authors\":\"Qi Wang, Liping Shen\",\"doi\":\"10.1145/3184066.3184098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOOC continues to thrive in today and CNMOOC is one of the largest MOOC platform in China which cooperates with many high schools and universities. We try to hardness the data of students' learning behaviors to provide better personalized learning advice. Online education digitalizes students' learning behaviors which makes it convenient for analyzing students' behaviors. However the industrial data of MOOC is much sophisticated and sparse. In the paper, we introduce the system using machine learning methods to improve educational outcomes and describe some ideas tackling data sparsity in the scenario. We only focus on predicting student learning proficiency on specific course and compare different models under the scenario of inadequate data.\",\"PeriodicalId\":109559,\"journal\":{\"name\":\"International Conference on Machine Learning and Soft Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184066.3184098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

MOOC在今天继续蓬勃发展,CNMOOC是中国最大的MOOC平台之一,与许多高中和大学合作。我们试图对学生的学习行为数据进行硬度分析,以提供更好的个性化学习建议。在线教育将学生的学习行为数字化,便于对学生的行为进行分析。然而,MOOC的行业数据非常复杂和稀疏。在本文中,我们介绍了使用机器学习方法来提高教育成果的系统,并描述了一些解决场景中数据稀疏性的想法。我们只关注预测学生对特定课程的学习能力,并在数据不足的情况下比较不同的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Student proficiency prediction on CNMOOC data
MOOC continues to thrive in today and CNMOOC is one of the largest MOOC platform in China which cooperates with many high schools and universities. We try to hardness the data of students' learning behaviors to provide better personalized learning advice. Online education digitalizes students' learning behaviors which makes it convenient for analyzing students' behaviors. However the industrial data of MOOC is much sophisticated and sparse. In the paper, we introduce the system using machine learning methods to improve educational outcomes and describe some ideas tackling data sparsity in the scenario. We only focus on predicting student learning proficiency on specific course and compare different models under the scenario of inadequate data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信