SFuzz

Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang, Hong Hu, Ming Shen, Yue Liu, Shanqing Guo, Haixin Duan, Kaida Jiang, Zhi Xue
{"title":"SFuzz","authors":"Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang, Hong Hu, Ming Shen, Yue Liu, Shanqing Guo, Haixin Duan, Kaida Jiang, Zhi Xue","doi":"10.1145/3548606.3559367","DOIUrl":null,"url":null,"abstract":"Real-Time Operating System (RTOS) has become the main category of embedded systems. It is widely used to support tasks requiring real-time response such as printers and switches. The security of RTOS has been long overlooked as it was running in special environments isolated from attackers. However, with the rapid development of IoT devices, tremendous RTOS devices are connected to the public network. Due to the lack of security mechanisms, these devices are extremely vulnerable to a wide spectrum of attacks. Even worse, the monolithic design of RTOS combines various tasks and services into a single binary, which hinders the current program testing and analysis techniques working on RTOS. In this paper, we propose SFuzz, a novel slice-based fuzzer, to detect security vulnerabilities in RTOS. Our insight is that RTOS usually divides a complicated binary into many separated but single-minded tasks. Each task accomplishes a particular event in a deterministic way and its control flow is usually straightforward and independent. Therefore, we identify such code from the monolithic RTOS binary and synthesize a slice for effective testing. Specifically, SFuzz first identifies functions that handle user input, constructs call graphs that start from callers of these functions, and leverages forward slicing to build the execution tree based on the call graphs and pruning the paths independent of external inputs. Then, it detects and handles roadblocks within the coarse-grain scope that hinder effective fuzzing, such as instructions unrelated to the user input. And then, it conducts coverage-guided fuzzing on these code snippets. Finally, SFuzz leverages forward and backward slicing to track and verify each path constraint and determine whether a bug discovered in the fuzzer is a real vulnerability. SFuzz successfully discovered 77 zero-day bugs on 35 RTOS samples, and 67 of them have been assigned CVE or CNVD IDs. Our empirical evaluation shows that SFuzz outperforms the state-of-the-art tools (e.g., UnicornAFL) on testing RTOS.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SFuzz\",\"authors\":\"Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang, Hong Hu, Ming Shen, Yue Liu, Shanqing Guo, Haixin Duan, Kaida Jiang, Zhi Xue\",\"doi\":\"10.1145/3548606.3559367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-Time Operating System (RTOS) has become the main category of embedded systems. It is widely used to support tasks requiring real-time response such as printers and switches. The security of RTOS has been long overlooked as it was running in special environments isolated from attackers. However, with the rapid development of IoT devices, tremendous RTOS devices are connected to the public network. Due to the lack of security mechanisms, these devices are extremely vulnerable to a wide spectrum of attacks. Even worse, the monolithic design of RTOS combines various tasks and services into a single binary, which hinders the current program testing and analysis techniques working on RTOS. In this paper, we propose SFuzz, a novel slice-based fuzzer, to detect security vulnerabilities in RTOS. Our insight is that RTOS usually divides a complicated binary into many separated but single-minded tasks. Each task accomplishes a particular event in a deterministic way and its control flow is usually straightforward and independent. Therefore, we identify such code from the monolithic RTOS binary and synthesize a slice for effective testing. Specifically, SFuzz first identifies functions that handle user input, constructs call graphs that start from callers of these functions, and leverages forward slicing to build the execution tree based on the call graphs and pruning the paths independent of external inputs. Then, it detects and handles roadblocks within the coarse-grain scope that hinder effective fuzzing, such as instructions unrelated to the user input. And then, it conducts coverage-guided fuzzing on these code snippets. Finally, SFuzz leverages forward and backward slicing to track and verify each path constraint and determine whether a bug discovered in the fuzzer is a real vulnerability. SFuzz successfully discovered 77 zero-day bugs on 35 RTOS samples, and 67 of them have been assigned CVE or CNVD IDs. Our empirical evaluation shows that SFuzz outperforms the state-of-the-art tools (e.g., UnicornAFL) on testing RTOS.\",\"PeriodicalId\":435197,\"journal\":{\"name\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548606.3559367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3559367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFuzz
Real-Time Operating System (RTOS) has become the main category of embedded systems. It is widely used to support tasks requiring real-time response such as printers and switches. The security of RTOS has been long overlooked as it was running in special environments isolated from attackers. However, with the rapid development of IoT devices, tremendous RTOS devices are connected to the public network. Due to the lack of security mechanisms, these devices are extremely vulnerable to a wide spectrum of attacks. Even worse, the monolithic design of RTOS combines various tasks and services into a single binary, which hinders the current program testing and analysis techniques working on RTOS. In this paper, we propose SFuzz, a novel slice-based fuzzer, to detect security vulnerabilities in RTOS. Our insight is that RTOS usually divides a complicated binary into many separated but single-minded tasks. Each task accomplishes a particular event in a deterministic way and its control flow is usually straightforward and independent. Therefore, we identify such code from the monolithic RTOS binary and synthesize a slice for effective testing. Specifically, SFuzz first identifies functions that handle user input, constructs call graphs that start from callers of these functions, and leverages forward slicing to build the execution tree based on the call graphs and pruning the paths independent of external inputs. Then, it detects and handles roadblocks within the coarse-grain scope that hinder effective fuzzing, such as instructions unrelated to the user input. And then, it conducts coverage-guided fuzzing on these code snippets. Finally, SFuzz leverages forward and backward slicing to track and verify each path constraint and determine whether a bug discovered in the fuzzer is a real vulnerability. SFuzz successfully discovered 77 zero-day bugs on 35 RTOS samples, and 67 of them have been assigned CVE or CNVD IDs. Our empirical evaluation shows that SFuzz outperforms the state-of-the-art tools (e.g., UnicornAFL) on testing RTOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信