自调优数据库系统的知识表示和数据来源模型

Ana Carolina Almeida, Sérgio Lifschitz, K. Breitman
{"title":"自调优数据库系统的知识表示和数据来源模型","authors":"Ana Carolina Almeida, Sérgio Lifschitz, K. Breitman","doi":"10.1109/SEW.2009.25","DOIUrl":null,"url":null,"abstract":"Abstract- Most autonomic database systems do not explicit their decision rationale behind tuning activities. Consequently, users may not trust some of the automatic tuning decisions. In this paper we propose a rather transparent strategy, that provides feedback to database administrators, based on information extracted from the database log. The proposed approach consists in transforming log results into a user-friendly knowledge representation, based on the graphical representation for OWL. This model provides users with the rationale behind system decisions, adds semantics to the database self-tuning actions, and provides useful provenance information about the whole process.","PeriodicalId":252007,"journal":{"name":"2009 33rd Annual IEEE Software Engineering Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Knowledge Representation and Data Provenance Model to Self-Tuning Database Systems\",\"authors\":\"Ana Carolina Almeida, Sérgio Lifschitz, K. Breitman\",\"doi\":\"10.1109/SEW.2009.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract- Most autonomic database systems do not explicit their decision rationale behind tuning activities. Consequently, users may not trust some of the automatic tuning decisions. In this paper we propose a rather transparent strategy, that provides feedback to database administrators, based on information extracted from the database log. The proposed approach consists in transforming log results into a user-friendly knowledge representation, based on the graphical representation for OWL. This model provides users with the rationale behind system decisions, adds semantics to the database self-tuning actions, and provides useful provenance information about the whole process.\",\"PeriodicalId\":252007,\"journal\":{\"name\":\"2009 33rd Annual IEEE Software Engineering Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 33rd Annual IEEE Software Engineering Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEW.2009.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 33rd Annual IEEE Software Engineering Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEW.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要-大多数自治数据库系统并不明确其调优活动背后的决策原理。因此,用户可能不相信某些自动调优决策。在本文中,我们提出了一种相当透明的策略,该策略根据从数据库日志中提取的信息向数据库管理员提供反馈。该方法基于OWL的图形表示,将日志结果转换为用户友好的知识表示。该模型为用户提供了系统决策背后的基本原理,为数据库自调优操作添加了语义,并提供了有关整个过程的有用的来源信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Knowledge Representation and Data Provenance Model to Self-Tuning Database Systems
Abstract- Most autonomic database systems do not explicit their decision rationale behind tuning activities. Consequently, users may not trust some of the automatic tuning decisions. In this paper we propose a rather transparent strategy, that provides feedback to database administrators, based on information extracted from the database log. The proposed approach consists in transforming log results into a user-friendly knowledge representation, based on the graphical representation for OWL. This model provides users with the rationale behind system decisions, adds semantics to the database self-tuning actions, and provides useful provenance information about the whole process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信