{"title":"截断立方体上的随机行走和0-1背包解的抽样","authors":"B. Morris, A. Sinclair","doi":"10.1109/SFFCS.1999.814595","DOIUrl":null,"url":null,"abstract":"We solve an open problem concerning the mixing time of a symmetric random walk on an n-dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As a consequence, we obtain a full-polynomial randomized approximation scheme for counting the feasible solutions of a 0-1 knapsack problem. The key ingredient in our analysis is a combinatorial construction we call a \"balanced almost uniform permutation\", which seems to be of independent interest.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Random walks on truncated cubes and sampling 0-1 knapsack solutions\",\"authors\":\"B. Morris, A. Sinclair\",\"doi\":\"10.1109/SFFCS.1999.814595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve an open problem concerning the mixing time of a symmetric random walk on an n-dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As a consequence, we obtain a full-polynomial randomized approximation scheme for counting the feasible solutions of a 0-1 knapsack problem. The key ingredient in our analysis is a combinatorial construction we call a \\\"balanced almost uniform permutation\\\", which seems to be of independent interest.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random walks on truncated cubes and sampling 0-1 knapsack solutions
We solve an open problem concerning the mixing time of a symmetric random walk on an n-dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As a consequence, we obtain a full-polynomial randomized approximation scheme for counting the feasible solutions of a 0-1 knapsack problem. The key ingredient in our analysis is a combinatorial construction we call a "balanced almost uniform permutation", which seems to be of independent interest.