{"title":"一类CFD应用程序的可伸缩性问题","authors":"V. Naik","doi":"10.1109/SHPCC.1992.232632","DOIUrl":null,"url":null,"abstract":"Considers the performance scalability of a class of computational fluid dynamics applications. The results indicate that neither the scalability in time nor the scalability in problem size can be obtained by simply scaling up the processing power. Results are presented to show that latency, packet size, and transmission speeds play an important role. However, improvements only in the architectural parameters are not sufficient to realize full performance scalability. Suitable partitioning and algorithmic parameters must be selected for each type of architecture.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Scalability issues for a class of CFD applications\",\"authors\":\"V. Naik\",\"doi\":\"10.1109/SHPCC.1992.232632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considers the performance scalability of a class of computational fluid dynamics applications. The results indicate that neither the scalability in time nor the scalability in problem size can be obtained by simply scaling up the processing power. Results are presented to show that latency, packet size, and transmission speeds play an important role. However, improvements only in the architectural parameters are not sufficient to realize full performance scalability. Suitable partitioning and algorithmic parameters must be selected for each type of architecture.<<ETX>>\",\"PeriodicalId\":254515,\"journal\":{\"name\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHPCC.1992.232632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalability issues for a class of CFD applications
Considers the performance scalability of a class of computational fluid dynamics applications. The results indicate that neither the scalability in time nor the scalability in problem size can be obtained by simply scaling up the processing power. Results are presented to show that latency, packet size, and transmission speeds play an important role. However, improvements only in the architectural parameters are not sufficient to realize full performance scalability. Suitable partitioning and algorithmic parameters must be selected for each type of architecture.<>