水电机组投用问题的最短路径问题变体

Q2 Mathematics
Wim van Ackooij , Claudia D'Ambrosio , Leo Liberti , Raouia Taktak , Dimitri Thomopulos , Sonia Toubaline
{"title":"水电机组投用问题的最短路径问题变体","authors":"Wim van Ackooij ,&nbsp;Claudia D'Ambrosio ,&nbsp;Leo Liberti ,&nbsp;Raouia Taktak ,&nbsp;Dimitri Thomopulos ,&nbsp;Sonia Toubaline","doi":"10.1016/j.endm.2018.07.040","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the deterministic single-reservoir Hydro Unit Commitment Problem. Under some hypotheses, we present a time expanded graph representation for the problem, where, at each time step, nodes correspond to discrete operational points, and arcs refer to possible state changes. We show that our problem reduces to a Constrained Shortest Path Problem, propose and compare different approaches to solve the HUCP, based on mixed integer linear or dynamic programming.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.07.040","citationCount":"6","resultStr":"{\"title\":\"Shortest Path Problem variants for the Hydro Unit Commitment Problem\",\"authors\":\"Wim van Ackooij ,&nbsp;Claudia D'Ambrosio ,&nbsp;Leo Liberti ,&nbsp;Raouia Taktak ,&nbsp;Dimitri Thomopulos ,&nbsp;Sonia Toubaline\",\"doi\":\"10.1016/j.endm.2018.07.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the deterministic single-reservoir Hydro Unit Commitment Problem. Under some hypotheses, we present a time expanded graph representation for the problem, where, at each time step, nodes correspond to discrete operational points, and arcs refer to possible state changes. We show that our problem reduces to a Constrained Shortest Path Problem, propose and compare different approaches to solve the HUCP, based on mixed integer linear or dynamic programming.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.07.040\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了确定性的单水库机组调度问题。在某些假设下,我们给出了问题的时间扩展图表示,其中,在每个时间步长,节点对应于离散的操作点,弧表示可能的状态变化。我们表明,我们的问题减少到一个约束最短路径问题,提出并比较不同的方法来解决hup,基于混合整数线性或动态规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortest Path Problem variants for the Hydro Unit Commitment Problem

In this paper, we study the deterministic single-reservoir Hydro Unit Commitment Problem. Under some hypotheses, we present a time expanded graph representation for the problem, where, at each time step, nodes correspond to discrete operational points, and arcs refer to possible state changes. We show that our problem reduces to a Constrained Shortest Path Problem, propose and compare different approaches to solve the HUCP, based on mixed integer linear or dynamic programming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信