基于密度的数据流趋势分析聚类方法

Umesh Kokate, Arviand V. Deshpande, P. Mahalle
{"title":"基于密度的数据流趋势分析聚类方法","authors":"Umesh Kokate, Arviand V. Deshpande, P. Mahalle","doi":"10.4018/IJSE.2020070102","DOIUrl":null,"url":null,"abstract":"Evolution of data in the data stream environment generates patterns at different time instances. The cluster formation changes with respect to time because of the behaviour and members of clusters. Data stream clustering (DSC) allows us to investigate the changes of the group behaviour. These changes in the behaviour of the group members over time lead to formation of new clusters and may make old clusters extinct. Also, these extinct old clusters may recur over time. The problem is to identify and record these change patterns of evolving data streams. The knowledge obtained from these change patterns is then used for trends analysis over evolving data streams. In order to address this flexible clustering requirement, density-based clustering method is proposed to dynamically cluster evolving data streams. The decay factor identifies formation of new clusters and diminishing of older clusters on arrival of data points. This indicates trends in evolving data streams.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density-Based Clustering Method for Trends Analysis Using Evolving Data Stream\",\"authors\":\"Umesh Kokate, Arviand V. Deshpande, P. Mahalle\",\"doi\":\"10.4018/IJSE.2020070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolution of data in the data stream environment generates patterns at different time instances. The cluster formation changes with respect to time because of the behaviour and members of clusters. Data stream clustering (DSC) allows us to investigate the changes of the group behaviour. These changes in the behaviour of the group members over time lead to formation of new clusters and may make old clusters extinct. Also, these extinct old clusters may recur over time. The problem is to identify and record these change patterns of evolving data streams. The knowledge obtained from these change patterns is then used for trends analysis over evolving data streams. In order to address this flexible clustering requirement, density-based clustering method is proposed to dynamically cluster evolving data streams. The decay factor identifies formation of new clusters and diminishing of older clusters on arrival of data points. This indicates trends in evolving data streams.\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSE.2020070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2020070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据流环境中数据的演化在不同的时间实例中生成模式。由于团簇的行为和成员,团簇的形成随时间而变化。数据流聚类(DSC)允许我们调查群体行为的变化。随着时间的推移,群体成员行为的这些变化导致了新群体的形成,并可能使旧群体灭绝。此外,这些灭绝的旧星团可能会随着时间的推移而重新出现。问题是识别和记录这些不断发展的数据流的变化模式。然后将从这些变化模式中获得的知识用于对不断变化的数据流进行趋势分析。为了满足这种灵活的聚类需求,提出了基于密度的聚类方法对不断变化的数据流进行动态聚类。衰减因子在数据点到达时识别新簇的形成和旧簇的减少。这表明了不断发展的数据流的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density-Based Clustering Method for Trends Analysis Using Evolving Data Stream
Evolution of data in the data stream environment generates patterns at different time instances. The cluster formation changes with respect to time because of the behaviour and members of clusters. Data stream clustering (DSC) allows us to investigate the changes of the group behaviour. These changes in the behaviour of the group members over time lead to formation of new clusters and may make old clusters extinct. Also, these extinct old clusters may recur over time. The problem is to identify and record these change patterns of evolving data streams. The knowledge obtained from these change patterns is then used for trends analysis over evolving data streams. In order to address this flexible clustering requirement, density-based clustering method is proposed to dynamically cluster evolving data streams. The decay factor identifies formation of new clusters and diminishing of older clusters on arrival of data points. This indicates trends in evolving data streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信