基于改进k -媒质算法的兴趣弧谱线选择

Yiming Huang, Di Wu, Yinshui He, N. Lv, Shanben Chen
{"title":"基于改进k -媒质算法的兴趣弧谱线选择","authors":"Yiming Huang, Di Wu, Yinshui He, N. Lv, Shanben Chen","doi":"10.1109/ARSO.2016.7736265","DOIUrl":null,"url":null,"abstract":"In order to eliminate the effect of wavelength error value and spectral line broadening on the definition of arc plasma spectrum, K-medoids algorithm is used to cluster different kinds of spectral lines and determine the spectral line of interest(SLOI). An improved K-medoids algorithm based on minimum spanning tree is proposed to solve the problem that K-medoids algorithm can not ascertain the number of classification. Moreover, spectral distance(SD) is proposed as the criterion to cluster in terms of the characteristic of spectral data. By marking the known spectral lines, cluster testing is made to validate the validity of the algorithm. The experiment results show that improved K-medoids algorithm can cluster effectively and determine the SLOI.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The selection of arc spectral line of interest based on improved K-medoids algorithm\",\"authors\":\"Yiming Huang, Di Wu, Yinshui He, N. Lv, Shanben Chen\",\"doi\":\"10.1109/ARSO.2016.7736265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to eliminate the effect of wavelength error value and spectral line broadening on the definition of arc plasma spectrum, K-medoids algorithm is used to cluster different kinds of spectral lines and determine the spectral line of interest(SLOI). An improved K-medoids algorithm based on minimum spanning tree is proposed to solve the problem that K-medoids algorithm can not ascertain the number of classification. Moreover, spectral distance(SD) is proposed as the criterion to cluster in terms of the characteristic of spectral data. By marking the known spectral lines, cluster testing is made to validate the validity of the algorithm. The experiment results show that improved K-medoids algorithm can cluster effectively and determine the SLOI.\",\"PeriodicalId\":403924,\"journal\":{\"name\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2016.7736265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了消除波长误差值和谱线加宽对电弧等离子体光谱定义的影响,采用K-medoids算法对不同类型的谱线进行聚类,确定感兴趣谱线(SLOI)。针对K-medoids算法不能确定分类数的问题,提出了一种基于最小生成树的改进K-medoids算法。此外,根据光谱数据的特点,提出了光谱距离(SD)作为聚类标准。通过标记已知谱线,进行聚类测试,验证算法的有效性。实验结果表明,改进的K-medoids算法可以有效地聚类并确定SLOI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The selection of arc spectral line of interest based on improved K-medoids algorithm
In order to eliminate the effect of wavelength error value and spectral line broadening on the definition of arc plasma spectrum, K-medoids algorithm is used to cluster different kinds of spectral lines and determine the spectral line of interest(SLOI). An improved K-medoids algorithm based on minimum spanning tree is proposed to solve the problem that K-medoids algorithm can not ascertain the number of classification. Moreover, spectral distance(SD) is proposed as the criterion to cluster in terms of the characteristic of spectral data. By marking the known spectral lines, cluster testing is made to validate the validity of the algorithm. The experiment results show that improved K-medoids algorithm can cluster effectively and determine the SLOI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信