低复杂度窗口处理中二元极化核的构造

Grigorii Trofimiuk, P. Trifonov
{"title":"低复杂度窗口处理中二元极化核的构造","authors":"Grigorii Trofimiuk, P. Trifonov","doi":"10.1109/ITW44776.2019.8989344","DOIUrl":null,"url":null,"abstract":"An algorithm for construction of binary polarization kernels of size 16 and 32 with polarization rate greater than 0.5, which admit low complexity processing is proposed. Kernels are obtained by employing such linear transformations of the Arikan matrix, which minimize the complexity of the window processing algorithm, while preserving required rate of polarization. Simulation results show that polar subcodes with obtained kernels can outperform polar codes with Arikan kernel, while having lower decoding complexity.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Construction of binary polarization kernels for low complexity window processing\",\"authors\":\"Grigorii Trofimiuk, P. Trifonov\",\"doi\":\"10.1109/ITW44776.2019.8989344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for construction of binary polarization kernels of size 16 and 32 with polarization rate greater than 0.5, which admit low complexity processing is proposed. Kernels are obtained by employing such linear transformations of the Arikan matrix, which minimize the complexity of the window processing algorithm, while preserving required rate of polarization. Simulation results show that polar subcodes with obtained kernels can outperform polar codes with Arikan kernel, while having lower decoding complexity.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种构造尺寸为16和32且极化率大于0.5且复杂度较低的二元极化核的算法。利用这种对Arikan矩阵的线性变换得到核,在保持所需极化率的同时最小化了窗口处理算法的复杂性。仿真结果表明,采用该核的极子码的译码性能优于采用Arikan核的极子码,且译码复杂度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of binary polarization kernels for low complexity window processing
An algorithm for construction of binary polarization kernels of size 16 and 32 with polarization rate greater than 0.5, which admit low complexity processing is proposed. Kernels are obtained by employing such linear transformations of the Arikan matrix, which minimize the complexity of the window processing algorithm, while preserving required rate of polarization. Simulation results show that polar subcodes with obtained kernels can outperform polar codes with Arikan kernel, while having lower decoding complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信