海报:用于网络优化的深度学习M2M网关

Shivashankar Subramanian, Arindam Banerjee
{"title":"海报:用于网络优化的深度学习M2M网关","authors":"Shivashankar Subramanian, Arindam Banerjee","doi":"10.1145/2938559.2938592","DOIUrl":null,"url":null,"abstract":"Across application domains, M2M gateway should ideally provide various levels of network optimization. It can range from delaying transmissions from gateway to application server, change from push to pull mode, to stopping (re)-transmissions from devices to gateway. In this work, we propose a deep learning enabled M2M system to handle heterogeneous data sources for network optimization.","PeriodicalId":298684,"journal":{"name":"MobiSys '16 Companion","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster: Deep Learning Enabled M2M Gateway for Network Optimization\",\"authors\":\"Shivashankar Subramanian, Arindam Banerjee\",\"doi\":\"10.1145/2938559.2938592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Across application domains, M2M gateway should ideally provide various levels of network optimization. It can range from delaying transmissions from gateway to application server, change from push to pull mode, to stopping (re)-transmissions from devices to gateway. In this work, we propose a deep learning enabled M2M system to handle heterogeneous data sources for network optimization.\",\"PeriodicalId\":298684,\"journal\":{\"name\":\"MobiSys '16 Companion\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MobiSys '16 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2938559.2938592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MobiSys '16 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2938559.2938592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

跨应用程序域,理想情况下M2M网关应该提供各种级别的网络优化。它的范围可以从延迟从网关到应用服务器的传输、从推送到拉模式的改变,到停止(重新)从设备到网关的传输。在这项工作中,我们提出了一个支持深度学习的M2M系统来处理异构数据源以进行网络优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Deep Learning Enabled M2M Gateway for Network Optimization
Across application domains, M2M gateway should ideally provide various levels of network optimization. It can range from delaying transmissions from gateway to application server, change from push to pull mode, to stopping (re)-transmissions from devices to gateway. In this work, we propose a deep learning enabled M2M system to handle heterogeneous data sources for network optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信