基于深度学习网络的实时目标检测和语义分割硬件系统

Shaoxia Fang, Lu Tian, Junbin Wang, Shuang Liang, Dongliang Xie, Zhongmin Chen, Lingzhi Sui, Qian Yu, Xiaoming Sun, Yi Shan, Yu Wang
{"title":"基于深度学习网络的实时目标检测和语义分割硬件系统","authors":"Shaoxia Fang, Lu Tian, Junbin Wang, Shuang Liang, Dongliang Xie, Zhongmin Chen, Lingzhi Sui, Qian Yu, Xiaoming Sun, Yi Shan, Yu Wang","doi":"10.1109/FPT.2018.00081","DOIUrl":null,"url":null,"abstract":"Advanced Driver Assistance Systems (ADAS) help the driver in the driving process by detecting objects, doing basic classification, implementing safety guards and so on. Convolution Neural Networks (CNN) has been proved to be an essential to support ADAS. We designed an architecture named Aristotle to execute neural networks for both object detection and semantic segmentation on FPGA. DNNDK (Deep Learning Development Toolkit), a full-stack software tool, with tens of compilation optimization techniques is proposed to improve the energy efficiency and make it easy to develop. The Aristotle architecture is implemented on Xilinx ZU9 FPGA, and two networks are deployed on it to execute object detection and semantic segmentation, respectively.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-Time Object Detection and Semantic Segmentation Hardware System with Deep Learning Networks\",\"authors\":\"Shaoxia Fang, Lu Tian, Junbin Wang, Shuang Liang, Dongliang Xie, Zhongmin Chen, Lingzhi Sui, Qian Yu, Xiaoming Sun, Yi Shan, Yu Wang\",\"doi\":\"10.1109/FPT.2018.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Driver Assistance Systems (ADAS) help the driver in the driving process by detecting objects, doing basic classification, implementing safety guards and so on. Convolution Neural Networks (CNN) has been proved to be an essential to support ADAS. We designed an architecture named Aristotle to execute neural networks for both object detection and semantic segmentation on FPGA. DNNDK (Deep Learning Development Toolkit), a full-stack software tool, with tens of compilation optimization techniques is proposed to improve the energy efficiency and make it easy to develop. The Aristotle architecture is implemented on Xilinx ZU9 FPGA, and two networks are deployed on it to execute object detection and semantic segmentation, respectively.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

高级驾驶辅助系统(Advanced Driver Assistance Systems, ADAS)通过检测物体、进行基本分类、实施安全防护等功能,在驾驶过程中帮助驾驶员。卷积神经网络(CNN)已被证明是支持ADAS的关键。我们设计了一个名为Aristotle的架构,在FPGA上执行用于对象检测和语义分割的神经网络。DNNDK (Deep Learning Development Toolkit)是一种全栈软件工具,采用数十种编译优化技术来提高能效,使其易于开发。在Xilinx ZU9 FPGA上实现了亚里士多德架构,并在其上部署了两个网络,分别执行对象检测和语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Object Detection and Semantic Segmentation Hardware System with Deep Learning Networks
Advanced Driver Assistance Systems (ADAS) help the driver in the driving process by detecting objects, doing basic classification, implementing safety guards and so on. Convolution Neural Networks (CNN) has been proved to be an essential to support ADAS. We designed an architecture named Aristotle to execute neural networks for both object detection and semantic segmentation on FPGA. DNNDK (Deep Learning Development Toolkit), a full-stack software tool, with tens of compilation optimization techniques is proposed to improve the energy efficiency and make it easy to develop. The Aristotle architecture is implemented on Xilinx ZU9 FPGA, and two networks are deployed on it to execute object detection and semantic segmentation, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信