共聚焦椭圆多连通截面椭圆环扇形的纯弯曲

Y. Pala
{"title":"共聚焦椭圆多连通截面椭圆环扇形的纯弯曲","authors":"Y. Pala","doi":"10.1299/JSMEA1993.39.1_55","DOIUrl":null,"url":null,"abstract":"In this study, internal stresses of an elliptical ring sector with the cross section of a multi connected region composed of two confocal ellipses, subjected to pure bending are analyzed. Gohner's method is used for analysis and therefore, some difficulties caused by elliptical coordinates are eliminated. The analysis is limited to determining the first correction to the initial stress state for pure bending of an elliptical ring sector with the cross section of two confocal ellipses.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure Bending of Elliptical Ring Sector with Cross Section of Multi-Connected Region Composed of Confocal Ellipses\",\"authors\":\"Y. Pala\",\"doi\":\"10.1299/JSMEA1993.39.1_55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, internal stresses of an elliptical ring sector with the cross section of a multi connected region composed of two confocal ellipses, subjected to pure bending are analyzed. Gohner's method is used for analysis and therefore, some difficulties caused by elliptical coordinates are eliminated. The analysis is limited to determining the first correction to the initial stress state for pure bending of an elliptical ring sector with the cross section of two confocal ellipses.\",\"PeriodicalId\":143127,\"journal\":{\"name\":\"JSME international journal. Series A, mechanics and material engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSME international journal. Series A, mechanics and material engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA1993.39.1_55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.39.1_55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了纯弯曲作用下由两个共聚焦椭圆组成的多连通区域截面椭圆环扇形的内应力。采用Gohner方法进行分析,从而消除了椭圆坐标带来的一些困难。分析仅限于确定具有两个共聚焦椭圆截面的椭圆环扇形纯弯曲的初始应力状态的第一次修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pure Bending of Elliptical Ring Sector with Cross Section of Multi-Connected Region Composed of Confocal Ellipses
In this study, internal stresses of an elliptical ring sector with the cross section of a multi connected region composed of two confocal ellipses, subjected to pure bending are analyzed. Gohner's method is used for analysis and therefore, some difficulties caused by elliptical coordinates are eliminated. The analysis is limited to determining the first correction to the initial stress state for pure bending of an elliptical ring sector with the cross section of two confocal ellipses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信