基于预测模型的网络应用热管理

Jilong Kuang, L. Bhuyan
{"title":"基于预测模型的网络应用热管理","authors":"Jilong Kuang, L. Bhuyan","doi":"10.1109/ANCS.2011.16","DOIUrl":null,"url":null,"abstract":"As processor power density has increased at an alarming rate, chip/core temperature control becomes critical in satisfying given thermal constraint and avoiding hotspots. Unlike \"run-to-finish\" applications whose temperature will simply rise to saturation point and then stabilize, network applications do periodic packet processing, which causes temperature to rise and fall over time. However, no existing studies have focused on characterizing the temperature variation for periodic tasks. We envision that volatile thermal behavior has to be well understood in order to optimize thermal management. In this paper, we first build a novel predictive thermal model for generic periodic tasks running on a single core. This model can dynamically derive the core temperature at any time quickly and accurately. To verify the model, we use both Hot Spot simulator and a real Linux machine to run six network applications chosen from Net Bench. Then, we propose an online model update strategy using on-chip thermal sensors, which can effectively correct incidental errors by adjusting model parameters \"on-the-fly\". Finally, by combining the thermal model and the online update, we design, implement and evaluate a predictive model-based thermal management scheme on an Intel Xeon E5335 core for network applications based on the Stop & Go technique. Compared with two other alternatives, our scheme achieves lower temperature, higher throughput, no thermal constraint violation, and negligible overhead cost.","PeriodicalId":124429,"journal":{"name":"2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Model-Based Thermal Management for Network Applications\",\"authors\":\"Jilong Kuang, L. Bhuyan\",\"doi\":\"10.1109/ANCS.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As processor power density has increased at an alarming rate, chip/core temperature control becomes critical in satisfying given thermal constraint and avoiding hotspots. Unlike \\\"run-to-finish\\\" applications whose temperature will simply rise to saturation point and then stabilize, network applications do periodic packet processing, which causes temperature to rise and fall over time. However, no existing studies have focused on characterizing the temperature variation for periodic tasks. We envision that volatile thermal behavior has to be well understood in order to optimize thermal management. In this paper, we first build a novel predictive thermal model for generic periodic tasks running on a single core. This model can dynamically derive the core temperature at any time quickly and accurately. To verify the model, we use both Hot Spot simulator and a real Linux machine to run six network applications chosen from Net Bench. Then, we propose an online model update strategy using on-chip thermal sensors, which can effectively correct incidental errors by adjusting model parameters \\\"on-the-fly\\\". Finally, by combining the thermal model and the online update, we design, implement and evaluate a predictive model-based thermal management scheme on an Intel Xeon E5335 core for network applications based on the Stop & Go technique. Compared with two other alternatives, our scheme achieves lower temperature, higher throughput, no thermal constraint violation, and negligible overhead cost.\",\"PeriodicalId\":124429,\"journal\":{\"name\":\"2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANCS.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANCS.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着处理器功率密度以惊人的速度增长,芯片/核心温度控制对于满足给定的热约束和避免热点变得至关重要。与温度仅仅上升到饱和点然后稳定下来的“运行到完成”应用程序不同,网络应用程序进行周期性的数据包处理,这会导致温度随着时间的推移而上升和下降。然而,目前还没有研究关注周期性任务的温度变化特征。我们设想,为了优化热管理,必须很好地理解挥发性热行为。在本文中,我们首先为在单核上运行的一般周期性任务建立了一个新的预测热模型。该模型可以快速准确地动态导出岩心温度。为了验证该模型,我们使用Hot Spot模拟器和一台真实的Linux机器来运行从Net Bench中选择的六个网络应用程序。然后,我们提出了一种基于片上热传感器的在线模型更新策略,该策略可以通过“动态”调整模型参数来有效地纠正偶然误差。最后,结合热模型和在线更新,我们在Intel至强E5335内核上设计、实现和评估了一种基于Stop & Go技术的基于预测模型的网络应用热管理方案。与其他两种方案相比,我们的方案实现了更低的温度,更高的吞吐量,不违反热约束,开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Model-Based Thermal Management for Network Applications
As processor power density has increased at an alarming rate, chip/core temperature control becomes critical in satisfying given thermal constraint and avoiding hotspots. Unlike "run-to-finish" applications whose temperature will simply rise to saturation point and then stabilize, network applications do periodic packet processing, which causes temperature to rise and fall over time. However, no existing studies have focused on characterizing the temperature variation for periodic tasks. We envision that volatile thermal behavior has to be well understood in order to optimize thermal management. In this paper, we first build a novel predictive thermal model for generic periodic tasks running on a single core. This model can dynamically derive the core temperature at any time quickly and accurately. To verify the model, we use both Hot Spot simulator and a real Linux machine to run six network applications chosen from Net Bench. Then, we propose an online model update strategy using on-chip thermal sensors, which can effectively correct incidental errors by adjusting model parameters "on-the-fly". Finally, by combining the thermal model and the online update, we design, implement and evaluate a predictive model-based thermal management scheme on an Intel Xeon E5335 core for network applications based on the Stop & Go technique. Compared with two other alternatives, our scheme achieves lower temperature, higher throughput, no thermal constraint violation, and negligible overhead cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信