{"title":"基于迁移学习的血细胞图像多分类识别","authors":"Shuokun Yang, Fucheng You, D. Sun","doi":"10.1117/12.2671147","DOIUrl":null,"url":null,"abstract":"In this paper, three convolutional neural network models are used to achieve end-to-end recognition of blood cell images. The network model parameters are initialized by transfer learning from the pre-trained model on ImageNet, and then the blood cell images are input into the model, and the network model training is completed by back-propagation to continuously update the parameters. For small-scale datasets, the number of blood cell images is expanded using data increments to improve the generalization ability of the model. Experimental results on the BCCD dataset show that the best result MobileNetV2 achieves an accuracy and precision of 0.894 and 0.916, respectively.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-classification recognition of blood cell images based on transfer learning\",\"authors\":\"Shuokun Yang, Fucheng You, D. Sun\",\"doi\":\"10.1117/12.2671147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three convolutional neural network models are used to achieve end-to-end recognition of blood cell images. The network model parameters are initialized by transfer learning from the pre-trained model on ImageNet, and then the blood cell images are input into the model, and the network model training is completed by back-propagation to continuously update the parameters. For small-scale datasets, the number of blood cell images is expanded using data increments to improve the generalization ability of the model. Experimental results on the BCCD dataset show that the best result MobileNetV2 achieves an accuracy and precision of 0.894 and 0.916, respectively.\",\"PeriodicalId\":227528,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-classification recognition of blood cell images based on transfer learning
In this paper, three convolutional neural network models are used to achieve end-to-end recognition of blood cell images. The network model parameters are initialized by transfer learning from the pre-trained model on ImageNet, and then the blood cell images are input into the model, and the network model training is completed by back-propagation to continuously update the parameters. For small-scale datasets, the number of blood cell images is expanded using data increments to improve the generalization ability of the model. Experimental results on the BCCD dataset show that the best result MobileNetV2 achieves an accuracy and precision of 0.894 and 0.916, respectively.