M. Panwar, R. Hovsapian, Fathalla Eldali, Tony Thomas, Clay Koplin
{"title":"偏远社区弹性配电系统的设计:使用智能电表的外科负荷管理","authors":"M. Panwar, R. Hovsapian, Fathalla Eldali, Tony Thomas, Clay Koplin","doi":"10.1109/RWS52686.2021.9611791","DOIUrl":null,"url":null,"abstract":"This paper describes a systematic process of designing resilient electric distribution systems and microgrids using smart meters for surgical load management (SLM) as part of Advanced Metering Infrastructure (AMI). The work focuses on selection approach, integration, and interoperability aspects for AMI in microgrids. SLM is proposed as a granular control methodology for serving selective critical loads across different distribution feeders in the system during extreme events. The surgical load shedding as well as load pick-up provides a robust approach for maximizing critical load served in a resource-constrained electric distribution system or a microgrid. We present the case of a 20 MW islanded microgrid in Cordova, AK, USA, which is the demonstration site for field validation of resilience enhancement technologies for the DOE-funded Grid Modernization project RADIANCE. Cordova microgrid is an islanded distribution grid that provides an environment to prove the approach, and the techniques may also be applicable to other regional distribution systems.","PeriodicalId":294639,"journal":{"name":"2021 Resilience Week (RWS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Resilient Electric Distribution Systems for Remote Communities: Surgical Load Management using Smart Meters\",\"authors\":\"M. Panwar, R. Hovsapian, Fathalla Eldali, Tony Thomas, Clay Koplin\",\"doi\":\"10.1109/RWS52686.2021.9611791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a systematic process of designing resilient electric distribution systems and microgrids using smart meters for surgical load management (SLM) as part of Advanced Metering Infrastructure (AMI). The work focuses on selection approach, integration, and interoperability aspects for AMI in microgrids. SLM is proposed as a granular control methodology for serving selective critical loads across different distribution feeders in the system during extreme events. The surgical load shedding as well as load pick-up provides a robust approach for maximizing critical load served in a resource-constrained electric distribution system or a microgrid. We present the case of a 20 MW islanded microgrid in Cordova, AK, USA, which is the demonstration site for field validation of resilience enhancement technologies for the DOE-funded Grid Modernization project RADIANCE. Cordova microgrid is an islanded distribution grid that provides an environment to prove the approach, and the techniques may also be applicable to other regional distribution systems.\",\"PeriodicalId\":294639,\"journal\":{\"name\":\"2021 Resilience Week (RWS)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Resilience Week (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS52686.2021.9611791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Resilience Week (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS52686.2021.9611791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Resilient Electric Distribution Systems for Remote Communities: Surgical Load Management using Smart Meters
This paper describes a systematic process of designing resilient electric distribution systems and microgrids using smart meters for surgical load management (SLM) as part of Advanced Metering Infrastructure (AMI). The work focuses on selection approach, integration, and interoperability aspects for AMI in microgrids. SLM is proposed as a granular control methodology for serving selective critical loads across different distribution feeders in the system during extreme events. The surgical load shedding as well as load pick-up provides a robust approach for maximizing critical load served in a resource-constrained electric distribution system or a microgrid. We present the case of a 20 MW islanded microgrid in Cordova, AK, USA, which is the demonstration site for field validation of resilience enhancement technologies for the DOE-funded Grid Modernization project RADIANCE. Cordova microgrid is an islanded distribution grid that provides an environment to prove the approach, and the techniques may also be applicable to other regional distribution systems.