粗同调中的转移

U. Bunke, A. Engel, Daniel Kasprowski, Christoph Winges
{"title":"粗同调中的转移","authors":"U. Bunke, A. Engel, Daniel Kasprowski, Christoph Winges","doi":"10.17879/90169656968","DOIUrl":null,"url":null,"abstract":"We enlarge the category of bornological coarse spaces by adding transfer morphisms and introduce the notion of an equivariant coarse homology theory with transfers. We then show that equivariant coarse algebraic $K$-homology and equivariant coarse ordinary homology can be extended to equivariant coarse homology theories with transfers. In the case of a finite group we observe that equivariant coarse homology theories with transfers provide Mackey functors. We express standard constructions with Mackey functors in terms of coarse geometry, and we demonstrate the usage of transfers in order to prove injectivity results about assembly maps.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Transfers in coarse homology\",\"authors\":\"U. Bunke, A. Engel, Daniel Kasprowski, Christoph Winges\",\"doi\":\"10.17879/90169656968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We enlarge the category of bornological coarse spaces by adding transfer morphisms and introduce the notion of an equivariant coarse homology theory with transfers. We then show that equivariant coarse algebraic $K$-homology and equivariant coarse ordinary homology can be extended to equivariant coarse homology theories with transfers. In the case of a finite group we observe that equivariant coarse homology theories with transfers provide Mackey functors. We express standard constructions with Mackey functors in terms of coarse geometry, and we demonstrate the usage of transfers in order to prove injectivity results about assembly maps.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17879/90169656968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17879/90169656968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

通过增加转移态,扩大了bornological粗空间的范畴,并引入了具有转移的等变粗同调理论的概念。然后证明了等变粗代数K -同调和等变粗普通同调可以推广到具有转移的等变粗同调理论。在有限群的情况下,我们观察到具有转移的等变粗同调理论提供了麦基函子。我们用粗糙几何的Mackey函子表示标准构造,并演示了转移的使用,以证明关于装配映射的注入性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfers in coarse homology
We enlarge the category of bornological coarse spaces by adding transfer morphisms and introduce the notion of an equivariant coarse homology theory with transfers. We then show that equivariant coarse algebraic $K$-homology and equivariant coarse ordinary homology can be extended to equivariant coarse homology theories with transfers. In the case of a finite group we observe that equivariant coarse homology theories with transfers provide Mackey functors. We express standard constructions with Mackey functors in terms of coarse geometry, and we demonstrate the usage of transfers in order to prove injectivity results about assembly maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信