简单但不Naïve:细粒度阿拉伯语方言识别只使用n - gram

Sohaila Eltanbouly, May Bashendy, T. Elsayed
{"title":"简单但不Naïve:细粒度阿拉伯语方言识别只使用n - gram","authors":"Sohaila Eltanbouly, May Bashendy, T. Elsayed","doi":"10.18653/v1/W19-4624","DOIUrl":null,"url":null,"abstract":"This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character n-grams as features, and Na ̈ıve Bayes models as classifiers. Surprisingly, the simple approach achieved non-na ̈ıve performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams\",\"authors\":\"Sohaila Eltanbouly, May Bashendy, T. Elsayed\",\"doi\":\"10.18653/v1/W19-4624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character n-grams as features, and Na ̈ıve Bayes models as classifiers. Surprisingly, the simple approach achieved non-na ̈ıve performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.\",\"PeriodicalId\":268163,\"journal\":{\"name\":\"WANLP@ACL 2019\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WANLP@ACL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了卡塔尔大学团队参与的MADAR共享任务,该任务解决了除了现代标准阿拉伯语之外的25种不同阿拉伯语方言的句子级细粒度阿拉伯语方言识别问题。阿拉伯语方言识别不是一项微不足道的任务,因为不同的方言有一些共同的特征,例如,使用相同的字符集和一些词汇。在提取特征和分类模型方面,我们选择了一种非常简单的方法;我们只使用单词和字符n-gram作为特征,并使用Na ıve贝叶斯模型作为分类器。令人惊讶的是,简单的方法实现了non-na ıve性能。官方测试结果显示,通过我们提交的最佳运行,我们可以识别给定句子的方言,准确率为64.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams
This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character n-grams as features, and Na ̈ıve Bayes models as classifiers. Surprisingly, the simple approach achieved non-na ̈ıve performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信