3D自动结肠分割有效的息肉检测

M. Ismail, S. Elhabian, A. Farag, G. Dryden, A. Seow
{"title":"3D自动结肠分割有效的息肉检测","authors":"M. Ismail, S. Elhabian, A. Farag, G. Dryden, A. Seow","doi":"10.1109/CIBEC.2012.6473334","DOIUrl":null,"url":null,"abstract":"With polyps being the main cause of colorectal cancer, accurate colon segmentation is a crucial step for polyp detection in a virtual colonoscopy system. This paper presents a fully automated segmentation framework for the colon which is based on convex formulation of the active contour model. Our approach is tested on 7 sets where the results are further validated for polyp detection. Results show the efficiency of the framework with an overall accuracy of 99%, and high sensitivity of polyp detection.","PeriodicalId":416740,"journal":{"name":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D automated colon segmentation for efficient polyp detection\",\"authors\":\"M. Ismail, S. Elhabian, A. Farag, G. Dryden, A. Seow\",\"doi\":\"10.1109/CIBEC.2012.6473334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With polyps being the main cause of colorectal cancer, accurate colon segmentation is a crucial step for polyp detection in a virtual colonoscopy system. This paper presents a fully automated segmentation framework for the colon which is based on convex formulation of the active contour model. Our approach is tested on 7 sets where the results are further validated for polyp detection. Results show the efficiency of the framework with an overall accuracy of 99%, and high sensitivity of polyp detection.\",\"PeriodicalId\":416740,\"journal\":{\"name\":\"2012 Cairo International Biomedical Engineering Conference (CIBEC)\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Cairo International Biomedical Engineering Conference (CIBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBEC.2012.6473334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2012.6473334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于息肉是结直肠癌的主要病因,在虚拟结肠镜系统中,准确的结肠分割是息肉检测的关键步骤。本文提出了一种基于活动轮廓模型的凸公式的冒号全自动分割框架。我们的方法在7组上进行了测试,结果进一步验证了息肉检测的有效性。结果表明,该框架的总体准确率为99%,对息肉的检测具有较高的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D automated colon segmentation for efficient polyp detection
With polyps being the main cause of colorectal cancer, accurate colon segmentation is a crucial step for polyp detection in a virtual colonoscopy system. This paper presents a fully automated segmentation framework for the colon which is based on convex formulation of the active contour model. Our approach is tested on 7 sets where the results are further validated for polyp detection. Results show the efficiency of the framework with an overall accuracy of 99%, and high sensitivity of polyp detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信