一种具有认知情境维度的分层文本聚类算法

Yi Guo, Zhiqing Shao, Nan Hua
{"title":"一种具有认知情境维度的分层文本聚类算法","authors":"Yi Guo, Zhiqing Shao, Nan Hua","doi":"10.1109/WKDD.2009.17","DOIUrl":null,"url":null,"abstract":"Text clustering is an important task of text mining. The purpose of text clustering is grouping similar text documents together efficiently to meet human interests in information searching and understanding. The procedure of clustering should involve a cognitive process of text understanding or comprehension.This paper introduces an innovative research effort, CogHTC, a hierarchical text clustering algorithm, inspired by cognitive situation models. CogHTC extracts representative features from four elaborately selected cognitive situation dimensions with consideration of the clustering efficiency.The experimental results testified good performance of CogHTC, and revealed that the clustering results of CogHTC are class or domain sensitive, and CogHTC performed better on Cross-Class Clustering than Inner- Class Clustering.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hierarchical Text Clustering Algorithm with Cognitive Situation Dimensions\",\"authors\":\"Yi Guo, Zhiqing Shao, Nan Hua\",\"doi\":\"10.1109/WKDD.2009.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text clustering is an important task of text mining. The purpose of text clustering is grouping similar text documents together efficiently to meet human interests in information searching and understanding. The procedure of clustering should involve a cognitive process of text understanding or comprehension.This paper introduces an innovative research effort, CogHTC, a hierarchical text clustering algorithm, inspired by cognitive situation models. CogHTC extracts representative features from four elaborately selected cognitive situation dimensions with consideration of the clustering efficiency.The experimental results testified good performance of CogHTC, and revealed that the clustering results of CogHTC are class or domain sensitive, and CogHTC performed better on Cross-Class Clustering than Inner- Class Clustering.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

文本聚类是文本挖掘的一项重要任务。文本聚类的目的是将相似的文本文档有效地分组在一起,以满足人们对信息搜索和理解的兴趣。聚类过程应该包含一个文本理解或理解的认知过程。本文介绍了一项创新的研究成果,CogHTC,一种受认知情境模型启发的分层文本聚类算法。CogHTC在考虑聚类效率的前提下,从四个精心选择的认知情境维度中提取具有代表性的特征。实验结果证明了CogHTC的良好性能,并揭示了CogHTC的聚类结果是类或域敏感的,并且CogHTC在跨类聚类上的表现优于内类聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchical Text Clustering Algorithm with Cognitive Situation Dimensions
Text clustering is an important task of text mining. The purpose of text clustering is grouping similar text documents together efficiently to meet human interests in information searching and understanding. The procedure of clustering should involve a cognitive process of text understanding or comprehension.This paper introduces an innovative research effort, CogHTC, a hierarchical text clustering algorithm, inspired by cognitive situation models. CogHTC extracts representative features from four elaborately selected cognitive situation dimensions with consideration of the clustering efficiency.The experimental results testified good performance of CogHTC, and revealed that the clustering results of CogHTC are class or domain sensitive, and CogHTC performed better on Cross-Class Clustering than Inner- Class Clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信