基于自回归综合移动平均(ARIMA)的印度低纬度电离层总电子含量预报

R. Vankadara, S. Sasmal, A. Maurya, S. Panda
{"title":"基于自回归综合移动平均(ARIMA)的印度低纬度电离层总电子含量预报","authors":"R. Vankadara, S. Sasmal, A. Maurya, S. Panda","doi":"10.23919/URSI-RCRS56822.2022.10118532","DOIUrl":null,"url":null,"abstract":"Ionospheric total electron content (TEC) plays an important role in introducing delay errors in space-based navigation and communication signals and requires early forecasting of the plausible impacts on the relying systems. In the present work, an autoregressive integrated moving average (ARIMA) is implemented in the time series analysis to forecast the TEC at an Indian low latitude location (KL University, Guntur; Geographic 16.37°N, 80.37°E) during the quiet (5–9 January 2021) and disturbed (3–7 March 2022) geomagnetic conditions. The performance of the model is evaluated from the biases, root mean square error (RMSE), and correlation coefficients between model forecast and observed TEC. The results show that bias remains between -3 to +3 TECU and +2 to-4 during quiet and disturbed days, respectively. The corresponding RMSE values are within a limit of 5 TECU and 6 TECU. The occurrence of plasma irregularities is also verified by analyzing the scintillation indices during the period. A further analysis refinement of the model is aimed to improve the forecasting accuracy over the region.","PeriodicalId":229743,"journal":{"name":"2022 URSI Regional Conference on Radio Science (USRI-RCRS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Autoregressive Integrated Moving Average (ARIMA) Based Forecasting of Ionospheric Total Electron Content at a low latitude Indian Location\",\"authors\":\"R. Vankadara, S. Sasmal, A. Maurya, S. Panda\",\"doi\":\"10.23919/URSI-RCRS56822.2022.10118532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionospheric total electron content (TEC) plays an important role in introducing delay errors in space-based navigation and communication signals and requires early forecasting of the plausible impacts on the relying systems. In the present work, an autoregressive integrated moving average (ARIMA) is implemented in the time series analysis to forecast the TEC at an Indian low latitude location (KL University, Guntur; Geographic 16.37°N, 80.37°E) during the quiet (5–9 January 2021) and disturbed (3–7 March 2022) geomagnetic conditions. The performance of the model is evaluated from the biases, root mean square error (RMSE), and correlation coefficients between model forecast and observed TEC. The results show that bias remains between -3 to +3 TECU and +2 to-4 during quiet and disturbed days, respectively. The corresponding RMSE values are within a limit of 5 TECU and 6 TECU. The occurrence of plasma irregularities is also verified by analyzing the scintillation indices during the period. A further analysis refinement of the model is aimed to improve the forecasting accuracy over the region.\",\"PeriodicalId\":229743,\"journal\":{\"name\":\"2022 URSI Regional Conference on Radio Science (USRI-RCRS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 URSI Regional Conference on Radio Science (USRI-RCRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSI-RCRS56822.2022.10118532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 URSI Regional Conference on Radio Science (USRI-RCRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSI-RCRS56822.2022.10118532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电离层总电子含量(TEC)在天基导航和通信信号的延迟误差中起着重要作用,需要对依赖系统的可能影响进行早期预测。在本工作中,采用自回归综合移动平均(ARIMA)在时间序列分析中对印度低纬度地区的TEC进行预测。地理16.37°N, 80.37°E)在平静(2021年1月5日至9日)和扰动(2022年3月3日至7日)地磁条件下。模型的性能从偏差、均方根误差(RMSE)和模型预测与观测TEC之间的相关系数来评估。结果表明,在安静和受干扰的日子,偏置分别保持在-3 ~ +3 TECU和+2 ~ 4 TECU之间。对应的RMSE值在5tecu和6tecu之间。通过对这段时间内闪烁指数的分析,验证了等离子体不规则性的存在。进一步分析改进模型的目的是提高该地区的预报精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autoregressive Integrated Moving Average (ARIMA) Based Forecasting of Ionospheric Total Electron Content at a low latitude Indian Location
Ionospheric total electron content (TEC) plays an important role in introducing delay errors in space-based navigation and communication signals and requires early forecasting of the plausible impacts on the relying systems. In the present work, an autoregressive integrated moving average (ARIMA) is implemented in the time series analysis to forecast the TEC at an Indian low latitude location (KL University, Guntur; Geographic 16.37°N, 80.37°E) during the quiet (5–9 January 2021) and disturbed (3–7 March 2022) geomagnetic conditions. The performance of the model is evaluated from the biases, root mean square error (RMSE), and correlation coefficients between model forecast and observed TEC. The results show that bias remains between -3 to +3 TECU and +2 to-4 during quiet and disturbed days, respectively. The corresponding RMSE values are within a limit of 5 TECU and 6 TECU. The occurrence of plasma irregularities is also verified by analyzing the scintillation indices during the period. A further analysis refinement of the model is aimed to improve the forecasting accuracy over the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信