{"title":"双融合质量检测器用于乳房x光片质量检测","authors":"Shuo Liu, Zhihui Lai, Heng Kong, Linlin Shen","doi":"10.1109/CBMS55023.2022.00033","DOIUrl":null,"url":null,"abstract":"Mammogram mass detection is a difficult task due to the mass character of the tiny area, fuzzy boundary, and occlusion. To address these problems, this paper proposes a novel detection network for mammogram mass detection. Firstly, we propose a novel feature fusion structure and Small Target Attention Module (STAM) to improve the model's ability to detect small masses. Secondly, Results-oriented Loss (ROL) is adopted to obtain better model performance. Finally, Incremental Positive Selection (IPS) is used to divide positive and negative anchors. The scarcity of breast mammogram images for training aggravates the difficulty of mass detection. Thus, we open our collected dataset, which contains 1456 mammogram images from 400 patients. Since the model includes a double feature fusion structure, the proposed network is named Dual Fusion Mass Detector (DFMD). Experiment results show that DFMD is robust to various variations on scale, blurry and occlusion.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Fusion Mass Detector for Mammogram Mass Detection\",\"authors\":\"Shuo Liu, Zhihui Lai, Heng Kong, Linlin Shen\",\"doi\":\"10.1109/CBMS55023.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammogram mass detection is a difficult task due to the mass character of the tiny area, fuzzy boundary, and occlusion. To address these problems, this paper proposes a novel detection network for mammogram mass detection. Firstly, we propose a novel feature fusion structure and Small Target Attention Module (STAM) to improve the model's ability to detect small masses. Secondly, Results-oriented Loss (ROL) is adopted to obtain better model performance. Finally, Incremental Positive Selection (IPS) is used to divide positive and negative anchors. The scarcity of breast mammogram images for training aggravates the difficulty of mass detection. Thus, we open our collected dataset, which contains 1456 mammogram images from 400 patients. Since the model includes a double feature fusion structure, the proposed network is named Dual Fusion Mass Detector (DFMD). Experiment results show that DFMD is robust to various variations on scale, blurry and occlusion.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Fusion Mass Detector for Mammogram Mass Detection
Mammogram mass detection is a difficult task due to the mass character of the tiny area, fuzzy boundary, and occlusion. To address these problems, this paper proposes a novel detection network for mammogram mass detection. Firstly, we propose a novel feature fusion structure and Small Target Attention Module (STAM) to improve the model's ability to detect small masses. Secondly, Results-oriented Loss (ROL) is adopted to obtain better model performance. Finally, Incremental Positive Selection (IPS) is used to divide positive and negative anchors. The scarcity of breast mammogram images for training aggravates the difficulty of mass detection. Thus, we open our collected dataset, which contains 1456 mammogram images from 400 patients. Since the model includes a double feature fusion structure, the proposed network is named Dual Fusion Mass Detector (DFMD). Experiment results show that DFMD is robust to various variations on scale, blurry and occlusion.