Xiao Yang, Xinghua Zheng, Yang Zheng, Liang Wang, Chen Haisheng
{"title":"基于直流加热的低维材料导热系数测量方法","authors":"Xiao Yang, Xinghua Zheng, Yang Zheng, Liang Wang, Chen Haisheng","doi":"10.1115/mnhmt2019-3911","DOIUrl":null,"url":null,"abstract":"\n Due to the small size of low-dimensional materials, traditional experimental methods can hardly meet the requirements of accurate measurement. This paper presented a method for measuring the thermal conductivity of low-dimensional materials based on DC heating. This method adopted a micro-machining process to prepare a measuring electrode in advance, and only needed to suspend the object (one-dimensional wire or two-dimensional film) on the electrodes and maintain close contact. Finally, a standard diameter of 20 μm platinum wire was used to verify the measurement accuracy of this method. The application and future development of thermal conductivity testing structures for low-dimensional materials were also prospected.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for Measuring Thermal Conductivity of Low-Dimensional Materials Based on DC Heating\",\"authors\":\"Xiao Yang, Xinghua Zheng, Yang Zheng, Liang Wang, Chen Haisheng\",\"doi\":\"10.1115/mnhmt2019-3911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Due to the small size of low-dimensional materials, traditional experimental methods can hardly meet the requirements of accurate measurement. This paper presented a method for measuring the thermal conductivity of low-dimensional materials based on DC heating. This method adopted a micro-machining process to prepare a measuring electrode in advance, and only needed to suspend the object (one-dimensional wire or two-dimensional film) on the electrodes and maintain close contact. Finally, a standard diameter of 20 μm platinum wire was used to verify the measurement accuracy of this method. The application and future development of thermal conductivity testing structures for low-dimensional materials were also prospected.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-3911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Method for Measuring Thermal Conductivity of Low-Dimensional Materials Based on DC Heating
Due to the small size of low-dimensional materials, traditional experimental methods can hardly meet the requirements of accurate measurement. This paper presented a method for measuring the thermal conductivity of low-dimensional materials based on DC heating. This method adopted a micro-machining process to prepare a measuring electrode in advance, and only needed to suspend the object (one-dimensional wire or two-dimensional film) on the electrodes and maintain close contact. Finally, a standard diameter of 20 μm platinum wire was used to verify the measurement accuracy of this method. The application and future development of thermal conductivity testing structures for low-dimensional materials were also prospected.