统计语义在基于元数据的社会图像检索中的应用

Navid Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu
{"title":"统计语义在基于元数据的社会图像检索中的应用","authors":"Navid Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu","doi":"10.1109/CBMI.2015.7153634","DOIUrl":null,"url":null,"abstract":"We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the use of statistical semantics for metadata-based social image retrieval\",\"authors\":\"Navid Rekabsaz, R. Bierig, B. Ionescu, A. Hanbury, M. Lupu\",\"doi\":\"10.1109/CBMI.2015.7153634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们重新审视基于文本的社交媒体图像检索,探索统计语义提供的机会。我们评估了几种互补的基于语料库的与词表示相结合的语义文本相似度方法的性能和局限性。我们将结果与最先进的文本搜索引擎进行比较。与最佳实践的Solr搜索引擎相比,我们基于深度学习的语义检索方法在统计上有了显著的改进,但代价是处理时间显著增加。我们提供了一种解决方案,与标准方法相比,可以将语义处理时间减少48%,同时实现相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of statistical semantics for metadata-based social image retrieval
We revisit text-based image retrieval for social media, exploring the opportunities offered by statistical semantics. We assess the performance and limitation of several complementary corpus-based semantic text similarity methods in combination with word representations. We compare results with state-of-the-art text search engines. Our deep learning-based semantic retrieval methods show a statistically significant improvement in comparison to a best practice Solr search engine, at the expense of a significant increase in processing time. We provide a solution for reducing the semantic processing time up to 48% compared to the standard approach, while achieving the same performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信