基于机器学习的软件定义网络DDoS攻击检测

Srinuvasarao Sanapala, D. D. Reddy, G. L. Chowdary, K.Sai Vikyath
{"title":"基于机器学习的软件定义网络DDoS攻击检测","authors":"Srinuvasarao Sanapala, D. D. Reddy, G. L. Chowdary, K.Sai Vikyath","doi":"10.1109/ICECAA58104.2023.10212147","DOIUrl":null,"url":null,"abstract":"DDoS attacks remain a serious threat to the performance and availability of computer networks. This study provides a machine learning-based method for identifying DDoS attacks in SDN (software-defined networks). The proposed method employs support vector machine (SVM) and decision tree (DT) classifiers to monitor and analyze network traffic in real-time, spotting prospective attacks and thwarting them before they can do any harm. The testing findings show the efficiency of the proposed methodology, detecting and mitigating DDoS attacks with high accuracy while minimizing false positives. The proposed method offers a scalable and effective method for boosting the security of SDN-based networks against DDoS attacks by utilizing the centralized control plane of SDN.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Based DDoS Attack Detection in Software Defined Networks (SDN)\",\"authors\":\"Srinuvasarao Sanapala, D. D. Reddy, G. L. Chowdary, K.Sai Vikyath\",\"doi\":\"10.1109/ICECAA58104.2023.10212147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DDoS attacks remain a serious threat to the performance and availability of computer networks. This study provides a machine learning-based method for identifying DDoS attacks in SDN (software-defined networks). The proposed method employs support vector machine (SVM) and decision tree (DT) classifiers to monitor and analyze network traffic in real-time, spotting prospective attacks and thwarting them before they can do any harm. The testing findings show the efficiency of the proposed methodology, detecting and mitigating DDoS attacks with high accuracy while minimizing false positives. The proposed method offers a scalable and effective method for boosting the security of SDN-based networks against DDoS attacks by utilizing the centralized control plane of SDN.\",\"PeriodicalId\":114624,\"journal\":{\"name\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA58104.2023.10212147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DDoS攻击仍然是对计算机网络性能和可用性的严重威胁。本研究提供了一种基于机器学习的方法来识别SDN(软件定义网络)中的DDoS攻击。该方法采用支持向量机(SVM)和决策树(DT)分类器实时监控和分析网络流量,发现潜在的攻击并在其造成任何伤害之前进行阻止。测试结果表明,所提出的方法的效率,检测和减轻DDoS攻击的准确性高,同时最大限度地减少误报。该方法利用SDN的集中控制平面,为提高基于SDN的网络抵御DDoS攻击的安全性提供了一种可扩展的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Based DDoS Attack Detection in Software Defined Networks (SDN)
DDoS attacks remain a serious threat to the performance and availability of computer networks. This study provides a machine learning-based method for identifying DDoS attacks in SDN (software-defined networks). The proposed method employs support vector machine (SVM) and decision tree (DT) classifiers to monitor and analyze network traffic in real-time, spotting prospective attacks and thwarting them before they can do any harm. The testing findings show the efficiency of the proposed methodology, detecting and mitigating DDoS attacks with high accuracy while minimizing false positives. The proposed method offers a scalable and effective method for boosting the security of SDN-based networks against DDoS attacks by utilizing the centralized control plane of SDN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信