多视点光谱聚类的联合原始空间和潜在空间

Ruiting Hu, Zhibin Gu, Songhe Feng
{"title":"多视点光谱聚类的联合原始空间和潜在空间","authors":"Ruiting Hu, Zhibin Gu, Songhe Feng","doi":"10.1109/PAAP56126.2022.10010419","DOIUrl":null,"url":null,"abstract":"We propose a novel multi-view spectral clustering model, called Joint Original space and Latent space for Multi-view clustering (JOLM). Different from most existing multi-view clustering methods, which usually improve clustering performance by developing original or latent features of multi-view data, the proposed JOLM method integrates both original features and latent features into a framework to improve clustering performance. Specifically, we learn the similarity graph matrix from original multiple features and latent features respectively, and obtain the global graph by minimizing the errors between them, so as to better utilize the rich information from multiple views. An effective iterative algorithm is proposed to optimize the objective function. Finally, abundant experiments show the effectiveness of our proposed method.","PeriodicalId":336339,"journal":{"name":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Original Space and Latent Space for Multi-view Spectral Clustering\",\"authors\":\"Ruiting Hu, Zhibin Gu, Songhe Feng\",\"doi\":\"10.1109/PAAP56126.2022.10010419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel multi-view spectral clustering model, called Joint Original space and Latent space for Multi-view clustering (JOLM). Different from most existing multi-view clustering methods, which usually improve clustering performance by developing original or latent features of multi-view data, the proposed JOLM method integrates both original features and latent features into a framework to improve clustering performance. Specifically, we learn the similarity graph matrix from original multiple features and latent features respectively, and obtain the global graph by minimizing the errors between them, so as to better utilize the rich information from multiple views. An effective iterative algorithm is proposed to optimize the objective function. Finally, abundant experiments show the effectiveness of our proposed method.\",\"PeriodicalId\":336339,\"journal\":{\"name\":\"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP56126.2022.10010419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP56126.2022.10010419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的多视点光谱聚类模型,称为联合原始空间和潜在空间的多视点聚类模型(JOLM)。现有的多视图聚类方法通常通过开发多视图数据的原始特征或潜在特征来提高聚类性能,而JOLM方法将原始特征和潜在特征集成到一个框架中来提高聚类性能。具体而言,我们分别从原始多特征和潜在特征中学习相似图矩阵,并通过最小化它们之间的误差来获得全局图,从而更好地利用多视图的丰富信息。提出了一种有效的迭代算法来优化目标函数。最后,大量的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Original Space and Latent Space for Multi-view Spectral Clustering
We propose a novel multi-view spectral clustering model, called Joint Original space and Latent space for Multi-view clustering (JOLM). Different from most existing multi-view clustering methods, which usually improve clustering performance by developing original or latent features of multi-view data, the proposed JOLM method integrates both original features and latent features into a framework to improve clustering performance. Specifically, we learn the similarity graph matrix from original multiple features and latent features respectively, and obtain the global graph by minimizing the errors between them, so as to better utilize the rich information from multiple views. An effective iterative algorithm is proposed to optimize the objective function. Finally, abundant experiments show the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信