一种简化的目标跟踪群优化方法

Guang Liu, Yuk Ying Chung, W. Yeh
{"title":"一种简化的目标跟踪群优化方法","authors":"Guang Liu, Yuk Ying Chung, W. Yeh","doi":"10.1109/IJCNN.2016.7727195","DOIUrl":null,"url":null,"abstract":"Moving object tracking in video sequences is an important task in the field of computer vision. In this paper, we propose a new population-based algorithm namely simplified swarm optimization (SSO) for tracking arbitrary objects. In SSO, the object model is first projected into a high-dimensional feature space, then the particles will fly over image pixels to find an optimal match of the target. While searching for the optimum, SSO progressively analyzes the occlusion situation. If any occlusion or disappearance of the target object is detected, the movement rules for the searching particles will be adaptively adjusted to recapture the target object. Experimental results showed that the SSO can robustly track an arbitrary target in various challenging conditions. Furthermore, SSO is capable to have 40% faster in speed and 36% higher in accuracy rate than the traditional PSO for varied environment.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A simplified swarm optimization for object tracking\",\"authors\":\"Guang Liu, Yuk Ying Chung, W. Yeh\",\"doi\":\"10.1109/IJCNN.2016.7727195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving object tracking in video sequences is an important task in the field of computer vision. In this paper, we propose a new population-based algorithm namely simplified swarm optimization (SSO) for tracking arbitrary objects. In SSO, the object model is first projected into a high-dimensional feature space, then the particles will fly over image pixels to find an optimal match of the target. While searching for the optimum, SSO progressively analyzes the occlusion situation. If any occlusion or disappearance of the target object is detected, the movement rules for the searching particles will be adaptively adjusted to recapture the target object. Experimental results showed that the SSO can robustly track an arbitrary target in various challenging conditions. Furthermore, SSO is capable to have 40% faster in speed and 36% higher in accuracy rate than the traditional PSO for varied environment.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"343 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

视频序列中的运动目标跟踪是计算机视觉领域的一个重要课题。本文提出了一种新的基于群体的目标跟踪算法——简化群优化算法(SSO)。在单点登录中,首先将目标模型投影到高维特征空间中,然后粒子在图像像素上飞行,寻找目标的最优匹配。在寻找最优方案的同时,SSO逐步分析咬合情况。如果检测到目标物体遮挡或消失,则自适应调整搜索粒子的运动规则,重新捕获目标物体。实验结果表明,该方法可以在各种复杂条件下对任意目标进行鲁棒跟踪。此外,在不同的环境中,SSO的速度比传统的PSO快40%,准确率比传统的PSO高36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simplified swarm optimization for object tracking
Moving object tracking in video sequences is an important task in the field of computer vision. In this paper, we propose a new population-based algorithm namely simplified swarm optimization (SSO) for tracking arbitrary objects. In SSO, the object model is first projected into a high-dimensional feature space, then the particles will fly over image pixels to find an optimal match of the target. While searching for the optimum, SSO progressively analyzes the occlusion situation. If any occlusion or disappearance of the target object is detected, the movement rules for the searching particles will be adaptively adjusted to recapture the target object. Experimental results showed that the SSO can robustly track an arbitrary target in various challenging conditions. Furthermore, SSO is capable to have 40% faster in speed and 36% higher in accuracy rate than the traditional PSO for varied environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信