MemcachedGPU: scale- up -out键值存储

Tayler H. Hetherington, Mike O'Connor, Tor M. Aamodt
{"title":"MemcachedGPU: scale- up -out键值存储","authors":"Tayler H. Hetherington, Mike O'Connor, Tor M. Aamodt","doi":"10.1145/2806777.2806836","DOIUrl":null,"url":null,"abstract":"This paper tackles the challenges of obtaining more efficient data center computing while maintaining low latency, low cost, programmability, and the potential for workload consolidation. We introduce GNoM, a software framework enabling energy-efficient, latency bandwidth optimized UDP network and application processing on GPUs. GNoM handles the data movement and task management to facilitate the development of high-throughput UDP network services on GPUs. We use GNoM to develop MemcachedGPU, an accelerated key-value store, and evaluate the full system on contemporary hardware. MemcachedGPU achieves ~10 GbE line-rate processing of ~13 million requests per second (MRPS) while delivering an efficiency of 62 thousand RPS per Watt (KRPS/W) on a high-performance GPU and 84.8 KRPS/W on a low-power GPU. This closely matches the throughput of an optimized FPGA implementation while providing up to 79% of the energy-efficiency on the low-power GPU. Additionally, the low-power GPU can potentially improve cost-efficiency (KRPS/$) up to 17% over a state-of-the-art CPU implementation. At 8 MRPS, MemcachedGPU achieves a 95-percentile RTT latency under 300μs on both GPUs. An offline limit study on the low-power GPU suggests that MemcachedGPU may continue scaling throughput and energy-efficiency up to 28.5 MRPS and 127 KRPS/W respectively.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"MemcachedGPU: scaling-up scale-out key-value stores\",\"authors\":\"Tayler H. Hetherington, Mike O'Connor, Tor M. Aamodt\",\"doi\":\"10.1145/2806777.2806836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the challenges of obtaining more efficient data center computing while maintaining low latency, low cost, programmability, and the potential for workload consolidation. We introduce GNoM, a software framework enabling energy-efficient, latency bandwidth optimized UDP network and application processing on GPUs. GNoM handles the data movement and task management to facilitate the development of high-throughput UDP network services on GPUs. We use GNoM to develop MemcachedGPU, an accelerated key-value store, and evaluate the full system on contemporary hardware. MemcachedGPU achieves ~10 GbE line-rate processing of ~13 million requests per second (MRPS) while delivering an efficiency of 62 thousand RPS per Watt (KRPS/W) on a high-performance GPU and 84.8 KRPS/W on a low-power GPU. This closely matches the throughput of an optimized FPGA implementation while providing up to 79% of the energy-efficiency on the low-power GPU. Additionally, the low-power GPU can potentially improve cost-efficiency (KRPS/$) up to 17% over a state-of-the-art CPU implementation. At 8 MRPS, MemcachedGPU achieves a 95-percentile RTT latency under 300μs on both GPUs. An offline limit study on the low-power GPU suggests that MemcachedGPU may continue scaling throughput and energy-efficiency up to 28.5 MRPS and 127 KRPS/W respectively.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2806836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

本文解决了在保持低延迟、低成本、可编程性和工作负载整合潜力的同时获得更高效的数据中心计算的挑战。我们介绍GNoM,一个软件框架,实现节能,延迟带宽优化的UDP网络和gpu上的应用程序处理。GNoM处理数据移动和任务管理,以便在gpu上开发高吞吐量的UDP网络服务。我们使用GNoM开发MemcachedGPU(一个加速键值存储),并在现代硬件上评估整个系统。MemcachedGPU实现了~ 10gbe的线率处理,每秒~ 1300万请求(MRPS),同时在高性能GPU上提供62000 RPS/W (KRPS/W)的效率,在低功耗GPU上提供84.8 KRPS/W。这与优化FPGA实现的吞吐量非常接近,同时在低功耗GPU上提供高达79%的能效。此外,与最先进的CPU实现相比,低功耗GPU可以潜在地提高成本效率(KRPS/$)高达17%。在8 MRPS时,MemcachedGPU在两个gpu上实现了低于300μs的95百分位RTT延迟。对低功耗GPU的离线限制研究表明,MemcachedGPU可以继续扩展吞吐量和能效,分别达到28.5 MRPS和127 KRPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MemcachedGPU: scaling-up scale-out key-value stores
This paper tackles the challenges of obtaining more efficient data center computing while maintaining low latency, low cost, programmability, and the potential for workload consolidation. We introduce GNoM, a software framework enabling energy-efficient, latency bandwidth optimized UDP network and application processing on GPUs. GNoM handles the data movement and task management to facilitate the development of high-throughput UDP network services on GPUs. We use GNoM to develop MemcachedGPU, an accelerated key-value store, and evaluate the full system on contemporary hardware. MemcachedGPU achieves ~10 GbE line-rate processing of ~13 million requests per second (MRPS) while delivering an efficiency of 62 thousand RPS per Watt (KRPS/W) on a high-performance GPU and 84.8 KRPS/W on a low-power GPU. This closely matches the throughput of an optimized FPGA implementation while providing up to 79% of the energy-efficiency on the low-power GPU. Additionally, the low-power GPU can potentially improve cost-efficiency (KRPS/$) up to 17% over a state-of-the-art CPU implementation. At 8 MRPS, MemcachedGPU achieves a 95-percentile RTT latency under 300μs on both GPUs. An offline limit study on the low-power GPU suggests that MemcachedGPU may continue scaling throughput and energy-efficiency up to 28.5 MRPS and 127 KRPS/W respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信