{"title":"贝叶斯网络估计算法结合遗传算法搜索更好的网络结构","authors":"H. Handa, O. Katai","doi":"10.1109/ICNNSP.2003.1279302","DOIUrl":null,"url":null,"abstract":"Estimation of Bayesian network algorithms, which adopt Bayesian networks as the probabilistic model were one of the most sophisticated algorithms in the estimation of distribution algorithms. However the estimation of Bayesian network is key topic of this algorithm, conventional EBNAs adopt greedy searches to search for better network structures. In this paper, we propose a new EBNA, which adopts genetic algorithm to search the structure of Bayesian network. In order to reduce the computational complexity of estimating better network structures, we elaborates the fitness function of the GA module, based upon the synchronicity of specific pattern in the selected individuals. Several computational simulations on multidimensional knapsack problems show us the effectiveness of the proposed method.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Estimation of Bayesian network algorithm with GA searching for better network structure\",\"authors\":\"H. Handa, O. Katai\",\"doi\":\"10.1109/ICNNSP.2003.1279302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of Bayesian network algorithms, which adopt Bayesian networks as the probabilistic model were one of the most sophisticated algorithms in the estimation of distribution algorithms. However the estimation of Bayesian network is key topic of this algorithm, conventional EBNAs adopt greedy searches to search for better network structures. In this paper, we propose a new EBNA, which adopts genetic algorithm to search the structure of Bayesian network. In order to reduce the computational complexity of estimating better network structures, we elaborates the fitness function of the GA module, based upon the synchronicity of specific pattern in the selected individuals. Several computational simulations on multidimensional knapsack problems show us the effectiveness of the proposed method.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1279302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Bayesian network algorithm with GA searching for better network structure
Estimation of Bayesian network algorithms, which adopt Bayesian networks as the probabilistic model were one of the most sophisticated algorithms in the estimation of distribution algorithms. However the estimation of Bayesian network is key topic of this algorithm, conventional EBNAs adopt greedy searches to search for better network structures. In this paper, we propose a new EBNA, which adopts genetic algorithm to search the structure of Bayesian network. In order to reduce the computational complexity of estimating better network structures, we elaborates the fitness function of the GA module, based upon the synchronicity of specific pattern in the selected individuals. Several computational simulations on multidimensional knapsack problems show us the effectiveness of the proposed method.