冷启动条件下电子学习内容推荐系统通用相似度度量的比较

Jeevamol Joy, Renumol V G
{"title":"冷启动条件下电子学习内容推荐系统通用相似度度量的比较","authors":"Jeevamol Joy, Renumol V G","doi":"10.1109/IBSSC51096.2020.9332162","DOIUrl":null,"url":null,"abstract":"Recommender systems in the e-learning domain assist learners in finding relevant learning materials based on their preferences and goals. One of the main components of such a recommender system is a similarity measurement unit, used to determine the set of learners having the same behavior. Several similarity functions have been proposed in the e-learning domain, with different performances in terms of accuracy and quality of recommendations. Most of these similarity methods do not perform satisfactorily in the presence of cold-start users. In this paper, we present a comparative study of 4 generic similarity measures (Pearson Correlation Similarity, Cosine Vector Similarity, Euclidean Distance Similarity, Jaccard Similarity Correlation) that are widely used in e-learning recommender systems. The evaluation metrics Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the performance of the recommender system with the 4 similarity measures. The results indicate better recommendation performance when using Cosine Vector Similarity in cold-start condition.","PeriodicalId":432093,"journal":{"name":"2020 IEEE Bombay Section Signature Conference (IBSSC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of Generic Similarity Measures in E-learning Content Recommender System in Cold-Start Condition\",\"authors\":\"Jeevamol Joy, Renumol V G\",\"doi\":\"10.1109/IBSSC51096.2020.9332162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems in the e-learning domain assist learners in finding relevant learning materials based on their preferences and goals. One of the main components of such a recommender system is a similarity measurement unit, used to determine the set of learners having the same behavior. Several similarity functions have been proposed in the e-learning domain, with different performances in terms of accuracy and quality of recommendations. Most of these similarity methods do not perform satisfactorily in the presence of cold-start users. In this paper, we present a comparative study of 4 generic similarity measures (Pearson Correlation Similarity, Cosine Vector Similarity, Euclidean Distance Similarity, Jaccard Similarity Correlation) that are widely used in e-learning recommender systems. The evaluation metrics Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the performance of the recommender system with the 4 similarity measures. The results indicate better recommendation performance when using Cosine Vector Similarity in cold-start condition.\",\"PeriodicalId\":432093,\"journal\":{\"name\":\"2020 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC51096.2020.9332162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC51096.2020.9332162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

电子学习领域的推荐系统帮助学习者根据他们的偏好和目标找到相关的学习材料。这种推荐系统的主要组成部分之一是相似性度量单元,用于确定具有相同行为的学习器集。在电子学习领域已经提出了几种相似函数,它们在推荐的准确性和质量方面表现不同。在冷启动用户在场的情况下,大多数相似方法都不能令人满意地执行。本文对电子学习推荐系统中广泛使用的4种通用相似度量(Pearson相关相似度、余弦向量相似度、欧几里得距离相似度、Jaccard相似度相关)进行了比较研究。使用评价指标平均绝对误差(MAE)和均方根误差(RMSE)对推荐系统的4个相似度度量进行评价。结果表明,在冷启动条件下使用余弦向量相似度的推荐效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Generic Similarity Measures in E-learning Content Recommender System in Cold-Start Condition
Recommender systems in the e-learning domain assist learners in finding relevant learning materials based on their preferences and goals. One of the main components of such a recommender system is a similarity measurement unit, used to determine the set of learners having the same behavior. Several similarity functions have been proposed in the e-learning domain, with different performances in terms of accuracy and quality of recommendations. Most of these similarity methods do not perform satisfactorily in the presence of cold-start users. In this paper, we present a comparative study of 4 generic similarity measures (Pearson Correlation Similarity, Cosine Vector Similarity, Euclidean Distance Similarity, Jaccard Similarity Correlation) that are widely used in e-learning recommender systems. The evaluation metrics Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to evaluate the performance of the recommender system with the 4 similarity measures. The results indicate better recommendation performance when using Cosine Vector Similarity in cold-start condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信