一种新的自然场景图像文本检测与定位算法

Sezer Karaoglu, Basura Fernando, A. Trémeau
{"title":"一种新的自然场景图像文本检测与定位算法","authors":"Sezer Karaoglu, Basura Fernando, A. Trémeau","doi":"10.1109/DICTA.2010.115","DOIUrl":null,"url":null,"abstract":"Text data in an image present useful information for annotation, indexing and structuring of images. The gathered information from images can be applied for devices for impaired people, navigation, tourist assistance or georeferencing business. In this paper we propose a novel algorithm for text detection and localization from outdoor/indoor images which is robust against different font size, style, uneven illumination, shadows, highlights, over exposed regions, low contrasted images, specular reflections and many distortions which makes text localization task harder. A binarization algorithm based on difference of gamma correction and morphological reconstruction is realized to extract the connected components of an image. These connected components are classified as text and non test using a Random Forest classifier. After that text regions are localized by a novel merging algorithm for further processing.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Novel Algorithm for Text Detection and Localization in Natural Scene Images\",\"authors\":\"Sezer Karaoglu, Basura Fernando, A. Trémeau\",\"doi\":\"10.1109/DICTA.2010.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text data in an image present useful information for annotation, indexing and structuring of images. The gathered information from images can be applied for devices for impaired people, navigation, tourist assistance or georeferencing business. In this paper we propose a novel algorithm for text detection and localization from outdoor/indoor images which is robust against different font size, style, uneven illumination, shadows, highlights, over exposed regions, low contrasted images, specular reflections and many distortions which makes text localization task harder. A binarization algorithm based on difference of gamma correction and morphological reconstruction is realized to extract the connected components of an image. These connected components are classified as text and non test using a Random Forest classifier. After that text regions are localized by a novel merging algorithm for further processing.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

图像中的文本数据为图像的注释、索引和结构提供了有用的信息。从图像中收集的信息可以应用于残疾人设备、导航、旅游辅助或地理参考业务。本文提出了一种新的室外/室内图像文本检测和定位算法,该算法对不同字体大小、样式、光照不均匀、阴影、高光、过度曝光区域、低对比度图像、镜面反射和许多失真都具有鲁棒性,从而使文本定位任务更加困难。实现了一种基于伽玛校正和形态重构差异的二值化算法来提取图像的连通分量。使用随机森林分类器将这些连接的组件分类为文本和非测试。然后用一种新颖的合并算法对文本区域进行定位,进一步进行处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Algorithm for Text Detection and Localization in Natural Scene Images
Text data in an image present useful information for annotation, indexing and structuring of images. The gathered information from images can be applied for devices for impaired people, navigation, tourist assistance or georeferencing business. In this paper we propose a novel algorithm for text detection and localization from outdoor/indoor images which is robust against different font size, style, uneven illumination, shadows, highlights, over exposed regions, low contrasted images, specular reflections and many distortions which makes text localization task harder. A binarization algorithm based on difference of gamma correction and morphological reconstruction is realized to extract the connected components of an image. These connected components are classified as text and non test using a Random Forest classifier. After that text regions are localized by a novel merging algorithm for further processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信