有界切面图上动态规划的下界

B. A. M. V. Geffen, B. Jansen, A. D. Kroon, Rolf Morel
{"title":"有界切面图上动态规划的下界","authors":"B. A. M. V. Geffen, B. Jansen, A. D. Kroon, Rolf Morel","doi":"10.4230/LIPIcs.IPEC.2018.3","DOIUrl":null,"url":null,"abstract":"Many combinatorial problems can be solved in time $O^*(c^{tw})$ on graphs of treewidth $tw$, for a problem-specific constant $c$. In several cases, matching upper and lower bounds on $c$ are known based on the Strong Exponential Time Hypothesis (SETH). In this paper we investigate the complexity of solving problems on graphs of bounded cutwidth, a graph parameter that takes larger values than treewidth. We strengthen earlier treewidth-based lower bounds to show that, assuming SETH, Independent Set cannot be solved in $O^*((2-\\varepsilon)^{cutw})$ time, and Dominating Set cannot be solved in $O^*((3-\\varepsilon)^{cutw})$ time. By designing a new crossover gadget, we extend these lower bounds even to planar graphs of bounded cutwidth or treewidth. Hence planarity does not help when solving Independent Set or Dominating Set on graphs of bounded width. This sharply contrasts the fact that in many settings, planarity allows problems to be solved much more efficiently.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth\",\"authors\":\"B. A. M. V. Geffen, B. Jansen, A. D. Kroon, Rolf Morel\",\"doi\":\"10.4230/LIPIcs.IPEC.2018.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many combinatorial problems can be solved in time $O^*(c^{tw})$ on graphs of treewidth $tw$, for a problem-specific constant $c$. In several cases, matching upper and lower bounds on $c$ are known based on the Strong Exponential Time Hypothesis (SETH). In this paper we investigate the complexity of solving problems on graphs of bounded cutwidth, a graph parameter that takes larger values than treewidth. We strengthen earlier treewidth-based lower bounds to show that, assuming SETH, Independent Set cannot be solved in $O^*((2-\\\\varepsilon)^{cutw})$ time, and Dominating Set cannot be solved in $O^*((3-\\\\varepsilon)^{cutw})$ time. By designing a new crossover gadget, we extend these lower bounds even to planar graphs of bounded cutwidth or treewidth. Hence planarity does not help when solving Independent Set or Dominating Set on graphs of bounded width. This sharply contrasts the fact that in many settings, planarity allows problems to be solved much more efficiently.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2018.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2018.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于特定于问题的常数$c$,许多组合问题可以在时间$O^*(c^{tw})$上求解。在一些情况下,基于强指数时间假设(SETH),已知$c$的匹配上界和下界。在本文中,我们研究了在有界宽度图上求解问题的复杂性,有界宽度图是一种比树宽值更大的图参数。我们加强了先前基于树宽度的下界,以表明,假设SETH,独立集不能在$O^*((2-\varepsilon)^{cutw})$时间内求解,支配集不能在$O^*((3-\varepsilon)^{cutw})$时间内求解。通过设计一个新的交叉小工具,我们甚至将这些下界扩展到有界宽度或树宽度的平面图上。因此,平面性在求解有界宽度图上的独立集或支配集时没有帮助。这与在许多情况下,平面性可以更有效地解决问题的事实形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth
Many combinatorial problems can be solved in time $O^*(c^{tw})$ on graphs of treewidth $tw$, for a problem-specific constant $c$. In several cases, matching upper and lower bounds on $c$ are known based on the Strong Exponential Time Hypothesis (SETH). In this paper we investigate the complexity of solving problems on graphs of bounded cutwidth, a graph parameter that takes larger values than treewidth. We strengthen earlier treewidth-based lower bounds to show that, assuming SETH, Independent Set cannot be solved in $O^*((2-\varepsilon)^{cutw})$ time, and Dominating Set cannot be solved in $O^*((3-\varepsilon)^{cutw})$ time. By designing a new crossover gadget, we extend these lower bounds even to planar graphs of bounded cutwidth or treewidth. Hence planarity does not help when solving Independent Set or Dominating Set on graphs of bounded width. This sharply contrasts the fact that in many settings, planarity allows problems to be solved much more efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信