不是你读到的都是真的!利用机器学习算法检测假新闻

Vanya Tiwari, Ruth G. Lennon, Thomas Dowling
{"title":"不是你读到的都是真的!利用机器学习算法检测假新闻","authors":"Vanya Tiwari, Ruth G. Lennon, Thomas Dowling","doi":"10.1109/ISSC49989.2020.9180206","DOIUrl":null,"url":null,"abstract":"This paper considers establishing if a news article is true or if it has been faked. To achieve the task accurately, the work compares different machine learning classification algorithm with the different feature extraction methods. The algorithm with the feature extraction method giving the highest accuracy is then used for future prediction of the labels of news headlines. In this work the algorithm show to have the highest accuracy was logistic regression with 71% percent accuracy when used with tf-idf feature extraction method.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms\",\"authors\":\"Vanya Tiwari, Ruth G. Lennon, Thomas Dowling\",\"doi\":\"10.1109/ISSC49989.2020.9180206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers establishing if a news article is true or if it has been faked. To achieve the task accurately, the work compares different machine learning classification algorithm with the different feature extraction methods. The algorithm with the feature extraction method giving the highest accuracy is then used for future prediction of the labels of news headlines. In this work the algorithm show to have the highest accuracy was logistic regression with 71% percent accuracy when used with tf-idf feature extraction method.\",\"PeriodicalId\":351013,\"journal\":{\"name\":\"2020 31st Irish Signals and Systems Conference (ISSC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Irish Signals and Systems Conference (ISSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSC49989.2020.9180206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文考虑确定一篇新闻文章是真实的还是伪造的。为了准确地完成任务,本文比较了不同的机器学习分类算法和不同的特征提取方法。采用特征提取方法的算法给出了最高的准确率,然后用于新闻标题标签的未来预测。在这项工作中,当与tf-idf特征提取方法一起使用时,该算法显示出最高的准确性是逻辑回归,准确率为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms
This paper considers establishing if a news article is true or if it has been faked. To achieve the task accurately, the work compares different machine learning classification algorithm with the different feature extraction methods. The algorithm with the feature extraction method giving the highest accuracy is then used for future prediction of the labels of news headlines. In this work the algorithm show to have the highest accuracy was logistic regression with 71% percent accuracy when used with tf-idf feature extraction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信