{"title":"基于虚拟闭环的无人机系统交通方法","authors":"Gregoire Ky, S. Alam, V. Duong","doi":"10.1109/AIDA-AT48540.2020.9049166","DOIUrl":null,"url":null,"abstract":"This paper introduces a new traffic method for unmanned aircraft systems traffic management, in terminal maneuver space, called the Carousel method. It revolves around the circulation of virtual blocks alongside a closed circuit. This paper emphasizes on the versatility of this method and showcases a simulation of one possible application to an operational scenario, as well as discussing further enhancements for the future of the method. This paper demonstrates the effectiveness of the geometric flexibility of the Carousel method. It first proves the entanglement between all its geometrical considerations, namely the separation length, length of the virtual blocks and maximal number of blocks on the circuit, as well as proving its geometrical flexibility through a series of simulations. Then, it successfully applies the method to a typical arrival scenario for unmanned aircraft systems, while taking into account randomized parameters, such as remaining battery and landing time, applied to every vechicleon the circuit.","PeriodicalId":106277,"journal":{"name":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Traffic Method for Unmanned Aircraft Systems on a Virtual Closed Circuit\",\"authors\":\"Gregoire Ky, S. Alam, V. Duong\",\"doi\":\"10.1109/AIDA-AT48540.2020.9049166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new traffic method for unmanned aircraft systems traffic management, in terminal maneuver space, called the Carousel method. It revolves around the circulation of virtual blocks alongside a closed circuit. This paper emphasizes on the versatility of this method and showcases a simulation of one possible application to an operational scenario, as well as discussing further enhancements for the future of the method. This paper demonstrates the effectiveness of the geometric flexibility of the Carousel method. It first proves the entanglement between all its geometrical considerations, namely the separation length, length of the virtual blocks and maximal number of blocks on the circuit, as well as proving its geometrical flexibility through a series of simulations. Then, it successfully applies the method to a typical arrival scenario for unmanned aircraft systems, while taking into account randomized parameters, such as remaining battery and landing time, applied to every vechicleon the circuit.\",\"PeriodicalId\":106277,\"journal\":{\"name\":\"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIDA-AT48540.2020.9049166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIDA-AT48540.2020.9049166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Traffic Method for Unmanned Aircraft Systems on a Virtual Closed Circuit
This paper introduces a new traffic method for unmanned aircraft systems traffic management, in terminal maneuver space, called the Carousel method. It revolves around the circulation of virtual blocks alongside a closed circuit. This paper emphasizes on the versatility of this method and showcases a simulation of one possible application to an operational scenario, as well as discussing further enhancements for the future of the method. This paper demonstrates the effectiveness of the geometric flexibility of the Carousel method. It first proves the entanglement between all its geometrical considerations, namely the separation length, length of the virtual blocks and maximal number of blocks on the circuit, as well as proving its geometrical flexibility through a series of simulations. Then, it successfully applies the method to a typical arrival scenario for unmanned aircraft systems, while taking into account randomized parameters, such as remaining battery and landing time, applied to every vechicleon the circuit.