离散生物数据的连续描述

S. Chernyshenko
{"title":"离散生物数据的连续描述","authors":"S. Chernyshenko","doi":"10.4018/IJARB.2019010103","DOIUrl":null,"url":null,"abstract":"The applicability of differential equations to description of integer values dynamics in bio-informatics is investigated. It is shown that a differential model may be interpreted as a continuous analogue of a stochastic flow. The method of construction of a quasi-Poisson flow on the base of multi-dimension differential equations is proposed. Mathematical correctness of the algorithm is proven. The system has been studied by a computer simulation and a discrete nature of processes has been taken into account. The proposed schema has been applied to the classical Volterra's models, which are widely used for description of biological systems. It has been demonstrated that although behaviour of discrete and continuous models is similar, some essential qualitative and quantitative differences in their dynamics take place.","PeriodicalId":350020,"journal":{"name":"International Journal of Applied Research in Bioinformatics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Description of Discrete Biological Data\",\"authors\":\"S. Chernyshenko\",\"doi\":\"10.4018/IJARB.2019010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applicability of differential equations to description of integer values dynamics in bio-informatics is investigated. It is shown that a differential model may be interpreted as a continuous analogue of a stochastic flow. The method of construction of a quasi-Poisson flow on the base of multi-dimension differential equations is proposed. Mathematical correctness of the algorithm is proven. The system has been studied by a computer simulation and a discrete nature of processes has been taken into account. The proposed schema has been applied to the classical Volterra's models, which are widely used for description of biological systems. It has been demonstrated that although behaviour of discrete and continuous models is similar, some essential qualitative and quantitative differences in their dynamics take place.\",\"PeriodicalId\":350020,\"journal\":{\"name\":\"International Journal of Applied Research in Bioinformatics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Research in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJARB.2019010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Research in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJARB.2019010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了生物信息学中微分方程在整数值动力学描述中的适用性。结果表明,微分模型可以解释为随机流动的连续模拟。提出了基于多维微分方程的拟泊松流的构造方法。证明了算法的数学正确性。该系统已通过计算机模拟进行了研究,并考虑了过程的离散性。所提出的模式已被应用于经典的沃尔泰拉模型,该模型被广泛用于描述生物系统。已经证明,尽管离散模型和连续模型的行为是相似的,但它们的动力学发生了一些本质的定性和定量差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Description of Discrete Biological Data
The applicability of differential equations to description of integer values dynamics in bio-informatics is investigated. It is shown that a differential model may be interpreted as a continuous analogue of a stochastic flow. The method of construction of a quasi-Poisson flow on the base of multi-dimension differential equations is proposed. Mathematical correctness of the algorithm is proven. The system has been studied by a computer simulation and a discrete nature of processes has been taken into account. The proposed schema has been applied to the classical Volterra's models, which are widely used for description of biological systems. It has been demonstrated that although behaviour of discrete and continuous models is similar, some essential qualitative and quantitative differences in their dynamics take place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信