基于深度强化学习的建筑物自适应异常检测

Tong Wu, Jorge Ortiz
{"title":"基于深度强化学习的建筑物自适应异常检测","authors":"Tong Wu, Jorge Ortiz","doi":"10.1145/3360322.3361011","DOIUrl":null,"url":null,"abstract":"In this paper, we present early results on the use of deep reinforcement learning (DRL) for maximizing anomaly detection performance in buildings. We conjecture that DRL can improve performance by exploring the entire parameter space for all sensors, individually. Many anomaly detection algorithms are designed to use a single parameter for ease of use, however there are usually many parameter values that are pre-set, a priori. We hypothesize that a single threshold cannot work well for all sensors and propose the use of DRL to explore the entire parameter space. We use a deterministic policy gradient algorithm - Deep Deterministic Policy Gradient (DDPG)[4] - and use a building-specific anomaly detection algorithm, Strip, Bind, and Search (SBS) [2]. We find that while the maximum performance achieved by both approaches is similar, the DRL-based approach is significantly less biased, more consistent - up to 3x smaller standard deviation across individual sensor scores.","PeriodicalId":128826,"journal":{"name":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards Adaptive Anomaly Detection in Buildings with Deep Reinforcement Learning\",\"authors\":\"Tong Wu, Jorge Ortiz\",\"doi\":\"10.1145/3360322.3361011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present early results on the use of deep reinforcement learning (DRL) for maximizing anomaly detection performance in buildings. We conjecture that DRL can improve performance by exploring the entire parameter space for all sensors, individually. Many anomaly detection algorithms are designed to use a single parameter for ease of use, however there are usually many parameter values that are pre-set, a priori. We hypothesize that a single threshold cannot work well for all sensors and propose the use of DRL to explore the entire parameter space. We use a deterministic policy gradient algorithm - Deep Deterministic Policy Gradient (DDPG)[4] - and use a building-specific anomaly detection algorithm, Strip, Bind, and Search (SBS) [2]. We find that while the maximum performance achieved by both approaches is similar, the DRL-based approach is significantly less biased, more consistent - up to 3x smaller standard deviation across individual sensor scores.\",\"PeriodicalId\":128826,\"journal\":{\"name\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3360322.3361011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360322.3361011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们介绍了使用深度强化学习(DRL)最大化建筑物异常检测性能的早期结果。我们推测,DRL可以通过单独探索所有传感器的整个参数空间来提高性能。为了方便使用,许多异常检测算法被设计为使用单个参数,但是通常有许多参数值是预先设置的,是先验的。我们假设单一阈值不能很好地适用于所有传感器,并提出使用DRL来探索整个参数空间。我们使用确定性策略梯度算法-深度确定性策略梯度(DDPG)[4] -并使用特定于建筑物的异常检测算法,条带,绑定和搜索(SBS)[2]。我们发现,虽然两种方法实现的最大性能是相似的,但基于drl的方法显着减少了偏差,更加一致-单个传感器评分的标准偏差小了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Adaptive Anomaly Detection in Buildings with Deep Reinforcement Learning
In this paper, we present early results on the use of deep reinforcement learning (DRL) for maximizing anomaly detection performance in buildings. We conjecture that DRL can improve performance by exploring the entire parameter space for all sensors, individually. Many anomaly detection algorithms are designed to use a single parameter for ease of use, however there are usually many parameter values that are pre-set, a priori. We hypothesize that a single threshold cannot work well for all sensors and propose the use of DRL to explore the entire parameter space. We use a deterministic policy gradient algorithm - Deep Deterministic Policy Gradient (DDPG)[4] - and use a building-specific anomaly detection algorithm, Strip, Bind, and Search (SBS) [2]. We find that while the maximum performance achieved by both approaches is similar, the DRL-based approach is significantly less biased, more consistent - up to 3x smaller standard deviation across individual sensor scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信