基于自适应阵列天线的空域和时域最优检测

R. Kohno, M. Nagatsuka, H. Imai
{"title":"基于自适应阵列天线的空域和时域最优检测","authors":"R. Kohno, M. Nagatsuka, H. Imai","doi":"10.1109/ISIT.1994.394995","DOIUrl":null,"url":null,"abstract":"This paper derives a generalized matched filter in spatial and temporal domains using an adaptive array antenna. The matched filter provides the optimal transfer function so as to maximize SINR (signal to interference-plus-noise ratio) in the array output. Moreover, if the generalized matched filter is followed by maximum likelihood sequence estimator in order to utilize memory in the channel, a generalized optimal receiver based on array antenna can be realized.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal detection based on adaptive array antenna in spatial and temporal domains\",\"authors\":\"R. Kohno, M. Nagatsuka, H. Imai\",\"doi\":\"10.1109/ISIT.1994.394995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives a generalized matched filter in spatial and temporal domains using an adaptive array antenna. The matched filter provides the optimal transfer function so as to maximize SINR (signal to interference-plus-noise ratio) in the array output. Moreover, if the generalized matched filter is followed by maximum likelihood sequence estimator in order to utilize memory in the channel, a generalized optimal receiver based on array antenna can be realized.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于自适应阵列天线的时域和空域的广义匹配滤波器。匹配的滤波器提供最优的传递函数,从而最大化阵列输出中的SINR(信噪比)。此外,如果在广义匹配滤波器后加上极大似然序列估计器以充分利用信道内的内存,则可以实现基于阵列天线的广义最优接收机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal detection based on adaptive array antenna in spatial and temporal domains
This paper derives a generalized matched filter in spatial and temporal domains using an adaptive array antenna. The matched filter provides the optimal transfer function so as to maximize SINR (signal to interference-plus-noise ratio) in the array output. Moreover, if the generalized matched filter is followed by maximum likelihood sequence estimator in order to utilize memory in the channel, a generalized optimal receiver based on array antenna can be realized.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信