Hilbert空间上适当等距作用群的紧算子和代数K理论

Guillermo Cortiñas, Gisela Tartaglia
{"title":"Hilbert空间上适当等距作用群的紧算子和代数K理论","authors":"Guillermo Cortiñas, Gisela Tartaglia","doi":"10.1515/CRELLE-2014-0154","DOIUrl":null,"url":null,"abstract":"We prove the $K$-theoretic Farrell-Jones conjecture for groups as in the title with coefficient rings and $C^*$-algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture with coefficients holds for such groups, to show that if $G$ is as in the title then the algebraic and the $C^*$-crossed products of $G$ with a stable $C^*$-algebra have the same $K$-theory.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact operators and algebraic $K$-theory for groups which act properly and isometrically on Hilbert space\",\"authors\":\"Guillermo Cortiñas, Gisela Tartaglia\",\"doi\":\"10.1515/CRELLE-2014-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the $K$-theoretic Farrell-Jones conjecture for groups as in the title with coefficient rings and $C^*$-algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture with coefficients holds for such groups, to show that if $G$ is as in the title then the algebraic and the $C^*$-crossed products of $G$ with a stable $C^*$-algebra have the same $K$-theory.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/CRELLE-2014-0154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/CRELLE-2014-0154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了关于紧算子稳定的系数环和C^*$-代数群的K -理论法雷尔-琼斯猜想。我们利用这一结果和Higson-Kasparov关于带系数的Baum-Connes猜想对这类群成立的结果,证明如果G$如题目所示,那么G$与稳定的C^*$-代数的代数积和C^*$-交叉积具有相同的K$-理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact operators and algebraic $K$-theory for groups which act properly and isometrically on Hilbert space
We prove the $K$-theoretic Farrell-Jones conjecture for groups as in the title with coefficient rings and $C^*$-algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture with coefficients holds for such groups, to show that if $G$ is as in the title then the algebraic and the $C^*$-crossed products of $G$ with a stable $C^*$-algebra have the same $K$-theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信