{"title":"基于概念图信息的股票价格走势预测","authors":"Ankit Soni, Nees Jan van Eck, U. Kaymak","doi":"10.1109/MCDM.2007.369438","DOIUrl":null,"url":null,"abstract":"Visualization of textual data may reveal interesting properties regarding the information conveyed in a group of documents. In this paper, we study whether the structure revealed by a visualization method can be used as inputs for improved classifiers. In particular, we study whether the locations of news items on a concept map could be used as inputs for improving the prediction of stock price movements from the news. We propose a method based on information visualization and text classification for achieving this. We apply the proposed approach to the prediction of the stock price movements of companies within the oil and natural gas sector. In a case study, we show that our proposed approach performs better than a naive approach and a bag-of-words approach","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Prediction of Stock Price Movements Based on Concept Map Information\",\"authors\":\"Ankit Soni, Nees Jan van Eck, U. Kaymak\",\"doi\":\"10.1109/MCDM.2007.369438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization of textual data may reveal interesting properties regarding the information conveyed in a group of documents. In this paper, we study whether the structure revealed by a visualization method can be used as inputs for improved classifiers. In particular, we study whether the locations of news items on a concept map could be used as inputs for improving the prediction of stock price movements from the news. We propose a method based on information visualization and text classification for achieving this. We apply the proposed approach to the prediction of the stock price movements of companies within the oil and natural gas sector. In a case study, we show that our proposed approach performs better than a naive approach and a bag-of-words approach\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Stock Price Movements Based on Concept Map Information
Visualization of textual data may reveal interesting properties regarding the information conveyed in a group of documents. In this paper, we study whether the structure revealed by a visualization method can be used as inputs for improved classifiers. In particular, we study whether the locations of news items on a concept map could be used as inputs for improving the prediction of stock price movements from the news. We propose a method based on information visualization and text classification for achieving this. We apply the proposed approach to the prediction of the stock price movements of companies within the oil and natural gas sector. In a case study, we show that our proposed approach performs better than a naive approach and a bag-of-words approach