二维线性分段全映射函数在混沌图像加密中的应用

Wanbo Yu, Q. Hou, Zhenzhen hu
{"title":"二维线性分段全映射函数在混沌图像加密中的应用","authors":"Wanbo Yu, Q. Hou, Zhenzhen hu","doi":"10.1117/12.2689598","DOIUrl":null,"url":null,"abstract":"In recent years, information security has become more and more important. Image encryption technology based on chaos theory has become one of the hot issues in this field. Chaotic system has the characteristics of initial value sensitivity and sequence ergodicity, which is very suitable for image encryption. In this paper, the folded surface is generated by connecting the randomly generated points on the bottom surface and the top surface in the unit space, and the surjective binary function is further constructed. Use this type of function and functions such as planes to construct discrete dynamical system. It is experimentally analyzed that the function has good chaotic characteristics by drawing bifurcation diagram and Lyapunov exponent diagram. The chaotic sequence of the discrete dynamic system is used for image encryption, and its information entropy and correlation coefficient before and after encryption are calculated. It is proved that this kind of system has good chaotic characteristics. This is a new type of chaotic system, which needs further research, analysis and expansion.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of two-dimensional linear piecewise full mapping function in chaotic image encryption\",\"authors\":\"Wanbo Yu, Q. Hou, Zhenzhen hu\",\"doi\":\"10.1117/12.2689598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, information security has become more and more important. Image encryption technology based on chaos theory has become one of the hot issues in this field. Chaotic system has the characteristics of initial value sensitivity and sequence ergodicity, which is very suitable for image encryption. In this paper, the folded surface is generated by connecting the randomly generated points on the bottom surface and the top surface in the unit space, and the surjective binary function is further constructed. Use this type of function and functions such as planes to construct discrete dynamical system. It is experimentally analyzed that the function has good chaotic characteristics by drawing bifurcation diagram and Lyapunov exponent diagram. The chaotic sequence of the discrete dynamic system is used for image encryption, and its information entropy and correlation coefficient before and after encryption are calculated. It is proved that this kind of system has good chaotic characteristics. This is a new type of chaotic system, which needs further research, analysis and expansion.\",\"PeriodicalId\":118234,\"journal\":{\"name\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,信息安全变得越来越重要。基于混沌理论的图像加密技术已成为该领域的研究热点之一。混沌系统具有初值敏感性和序列遍历性等特点,非常适合用于图像加密。本文将单位空间中随机生成的底面点与顶面点连接起来生成折叠曲面,并进一步构造满射二元函数。利用这类函数和平面等函数构造离散动力系统。通过绘制分岔图和李雅普诺夫指数图,实验分析了该函数具有良好的混沌特性。利用离散动态系统的混沌序列进行图像加密,计算其加密前后的信息熵和相关系数。证明了该系统具有良好的混沌特性。这是一种新型的混沌系统,需要进一步的研究、分析和拓展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of two-dimensional linear piecewise full mapping function in chaotic image encryption
In recent years, information security has become more and more important. Image encryption technology based on chaos theory has become one of the hot issues in this field. Chaotic system has the characteristics of initial value sensitivity and sequence ergodicity, which is very suitable for image encryption. In this paper, the folded surface is generated by connecting the randomly generated points on the bottom surface and the top surface in the unit space, and the surjective binary function is further constructed. Use this type of function and functions such as planes to construct discrete dynamical system. It is experimentally analyzed that the function has good chaotic characteristics by drawing bifurcation diagram and Lyapunov exponent diagram. The chaotic sequence of the discrete dynamic system is used for image encryption, and its information entropy and correlation coefficient before and after encryption are calculated. It is proved that this kind of system has good chaotic characteristics. This is a new type of chaotic system, which needs further research, analysis and expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信